Cat. No. W394-E1-05

SYSMAC CS Serles
CS1G/H-CPULI-EV1
CS1G/H-CPULIH
CS1D-CPULIH

SYSMAC CJ Serles
CJ1G-CPUL]
CJ1G/H-CPULIH
CJ1M-CPULI]

Programmable Controllers

PROGRAMMING MANUAL

OMRON

SYSMAC CS Series
CS1G/H-CPULI-EV1
CS1G/H-CPULIIH
CS1D-CPULCIH
SYSMAC CJ Series

CJ1G-CPULIL]
CJ1G/H-CPULILIH
CJ1M-CPULI]

Programmable Controllers

Programming Manual

Revised April 2003

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

&DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

&WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

&Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to
an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PLC” means Programmable Controller. “PC” is used, however, in some Program-
ming Device displays to mean Programmable Controller.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

J OMRON, 2001

All rights reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.

Vi

TABLE OF CONTENTS
PRECAUTIONS.

1 Intended AUdIENCEt e
General PreCautionsttt e
Safety PreCautions.ot e
Operating Environment PreCaltions.ottt e e
Application PreCautionst
Conformanceto EC DIreCtiVESottt e

SECTION 1
CPUUnit Operation. ...,

1-1 Initial Setup (CSLCPU UnitsONlY)o e e e
1-2 Usingthelnterna Clock (CSLCPU UnitsOnly)t
1-3 Interna Structureof theCPU UNIt. i
1-4 Operating MOES. . .. oot
1-5 Programsand Tasks.o vttt et e e
1-6 Description Of TasksS oot e

SECTION 2

Programming i
2-1 BaSiC CONCEIIS . o v vttt et e e
2-2 PreCaUtioNSottt e e
2-3 Checking Programs.ot

SECTION 3
Instruction FUNCLIONS. e

3-1 Sequence InNput INSLIUCLIONS oottt i it
3-2 Sequence OULPUL INStIUCLIONS oo i e e et et et e e
3-3 Sequence Control INSErUCLIONS oot teee
34 Timerand Counter INSrUCIONS.t e e
3-5 Comparison INStIUCLIONS.o e
3-6 DaaMovement INStrUCtioNS. oo e
3-7 DataShift INStructions
3-8 Increment/Decrement INStrUCtioONSo ottt
39 Symbol Math InStructions. oo
310 Conversion INSITUCHIONS.ot e e et e e e e
3-11 LogiCINStIUCHIONSottt e e e e e
3-12 Special Math InStructions oo e
3-13 Hoating-point Math INStructionst e e e
3-14 Double-precision Floating-point Instructions (CS1-H, CJ1-H, CJIM, or CS1D Only). ...
3-15 Table DataProcessing INStruCtions. i e e e
3-16 DataControl INStrUCtioNSot e e e
3-17 SUbroutine INStrUCHIONS.o e e
3-18 Interrupt Control INSIrUCtiONS oo e
3-19 High-speed Counter and Pulse Output Instructions (CJIM-CPU22/230nly)
320 SEEP INSIIUCHIONS . . . ottt ettt et e
3-21 Basicl/OUNItINStrUCtiONS . .. oot e
3-22 Serial Communications INStructions. i
3-23 Network INStrUCtiONS.o e e
3-24 FileMemory INStrUCtiONSot
3-25 Display INStrUCLIONS . .. oot e e

OOk, WN

Xl
Xii
Xii
Xii
Xiv
Xiv
XiX

71
72
74
77
80

88

91

95

96
101
107
109
110
114
118
122
125
127
129
130
131
132
133
135
136

vii

viii

TABLE OF CONTENTS

3-26 CloCK INSITUCHIONS. oo e 136
3-27 Debugging INStrUCLIONS. oot 137
3-28 Failure DiagnoSiSINSITUCIONS. oo ittt e et e e 138
3-29 Other INSITUCLIONS oo e e e e e e e e e e e 139
3-30 Block Programming INStructionscovuiit e et 140
3-31 Text String Processing INStructions. 146
3-32 Task Control INSIrUCLIONSo e 149
SECTION 4
TaASKS .« ot 151
4-1 Task FEaUNES. . . o oo 152
A-2 USING TaSKS .« ottt ettt e 161
A-3 INtErTUPE TaSKS. . o ottt e 171
4-4 Programming Device Operationsfor Tasks 183
SECTION 5
FileMemory Functions 185
51 FleMEMOrY ..o 186
52 Manipulating Files 201
5-3 Using File Memory e 228
SECTION 6
Advanced Functions. i 235
6-1 Cycle Time/High-Speed ProCESSING . . . oo v vttt et ettt e e 237
6-2 INdEX REGISIES . . oot 254
6-3 Serial COMMUNICAIIONS. . . .\ttt 263
6-4 Changing the Timer/Counter PV RefreshMode. o . 278
6-5 Using a Scheduled Interrupt as a High-precision Timer (CIAIM Only). 286
6-6 Startup Settings and MaintenanCe. oottt 288
6-7 DiagnostiC FUNCHIONS. oot e e e e e e 298
6-8 CPU Processing MOGES.ottt et e e 303
6-9 Peripheral Servicing Priority Mode 308
6-10 Battery-free Operationt 314
6-11 Other FUNCLIONS. o e e e e e 316
SECTION 7
Program Transfer, Trial Operation, and Debugging. 319
7-1 Program TranS e, . . oot e 320
7-2 Trial Operation and DEbUGGING. - .+« oottt ettt 320
Appendices
A PLC Comparison Charts: CJ-series, CS-series, C200HG/HE/HX,
COM1IH, CVM1, and CV-serieSPLCSt 329
B Changesfrom PreviousHost Link Systems 351
INdEX ..o 355
Revison History e 361

About this Manual:

This manual describes the programming of the CPU Units for CS/CJ-series Programmable Controllers
(PLCs) and includes the sections described on the following page. The CS Series and CJ Series are
subdivided as shown in the following table.

Unit CS Series CJ Series
CPU Units CS1-H CPU Units: CS1H-CPULCH CJ1-H CPU Units: CJ1H-CPULCH
CS1G-CPULIH CJ1G-CPULICH

CS1 CPU Units: CS1H-CPULIL-EV1 CJ1 CPU Units: CJ1G-CPULIL-EV1
CS1G-CPULIL-EV1 CJ1IM CPU Units: CJ1M-CPULIL]

CS1D CPU Units: CS1D-CPULILIH

Basic 1/0 Units CS-series Basic /O Units CJ-series Basic I/O Units
Special I/O Units CS-series Special /0 Units CJ-series Special I/0 Units
CPU Bus Units CS-series CPU Bus Units CJ-series CPU Bus Units
Power Supply Units | CS-series Power Supply Units CJ-series Power Supply Units

Please read this manual and all related manuals listed in the table on the next page and be sure you
understand information provided before attempting to install or use CS/CJ-series CPU Units in a PLC
System.

This manual contains the following sections.

Section 1 describes the basic structure and operation of the CPU Unit.

Section 2 describes basic information required to write, check, and input programs.
Section 3 outlines the instructions that can be used to write user programs.
Section 4 describes the operation of tasks.

Section 5 describes the functions used to manipulate file memory.

Section 6 provides details on advanced functions: Cycle time/high-speed processing, index registers,
serial communications, startup and maintenance, diagnostic and debugging, Programming Devices,
and CJ Basic I/O Unit input response time settings.

Section 7 describes the processes used to transfer the program to the CPU Unit and the functions that
can be used to test and debug the program.

The Appendices provide a comparison of CS/CJ-series, restrictions in using C200H Special /0 Units,
and changes made to Host Link Systems.

About thisManual, Continued

Name Cat. No. Contents

SYSMAC CS/CJ Series W394 | This manual describes programming and other

CS1G/H-CPULII-EV1, CS1G/H-CPULILIH, CS1D- methods to use the functions of the CS/CJ-series

CPULILIH, CJ1G-CPULIL], CI1G/H-CPULIIH PLCs. (This manual)

Programmable Controllers Programming Manual

SYSMAC CS Series W339 Provides an outlines of and describes the design,

CS1G/H-CPULIC-EV1, CS1G/H-CPULICIH installation, maintenance, and other basic opera-

Programmable Controllers Operation Manual tions for the CS-series PLCs.

SYSMAC CJ Series W393 Provides an outlines of and describes the design,

CJ1G-CPUL, CJ1G/H-CPULICH installation, maintenance, and other basic opera-

Programmable Controllers Operation Manual tions for the CJ-series PLCs.

SYSMAC CJ Series W395 Describes the functions of the built-in 1/O for

CJ1M-CPU22/23 CJ1M CPU Units.

Built-in I/O Functions Operation Manual

SYSMAC CS Series W405 Provides an outline of and describes the design,

CS1D-CPULILIH CPU Units installation, maintenance, and other basic opera-

CS1D-DPLO1 Duplex Unit tions for a Duplex System based on CS1D CPU

CS1D-PA207R Power Supply Unit Units.

Duplex System Operation Manual

SYSMAC CS/CJ Series W340 Describes the ladder diagram programming

CS1G/H-CPULII-EV1, CS1G/H-CPULIIH, CS1D- instructions supported by CS/CJ-series PLCs.

CPULIH, CJ1G-CPULI], CI1G/H-CPULIH

Programmable Controllers Instructions Reference Manual

SYSMAC CS/CJ Series W341 Provides information on how to program and

CQM1H-PROO01-E, C200H-PRO27-E, CQM1-PROO01-E operate CS/CJ-series PLCs using a Programming

Programming Consoles Operation Manual Console.

SYSMAC CS/CJ Series W342 Describes the C-series (Host Link) and FINS

CS1G/H-CPULILI-EV1, CS1G/H-CPULILIH, CJ1G- communications commands used with CS/CJ-

CPULIL], CJ1G/H-CPULILIH, CS1W-SCB21/41, CS1W- series PLCs.

SCU21, CJIW-SCU41

Communications Commands Reference Manual

SYSMAC WS02-CXPLILI-E w361 Provide information on how to use the CX-Pro-

CX-Programmer User Manual grammer, a programming device that supports

SYSMAC WS02-CXP[1 J-E W362 the CS/CJ-series PLCs, and the CX-Net con-

CX-Server User Manual tained within CX-Programmer.

SYSMAC CS/CJ Series W336 Describes the use of Serial Communications Unit

CS1W-SCB21/41, CS1W-SCU21, CJ1IW-SCU41 and Boards to perform serial communications

Serial Communications Boards/Units Operation Manual with external devices, including the usage of stan-
dard system protocols for OMRON products.

SYSMAC WS02-PSTC1-E w344 Describes the use of the CX-Protocol to create

CX-Protocol Operation Manual protocol macros as communications sequences
to communicate with external devices.

SYSMAC CS/CJ Series W343 Describes the installation and operation of CJ1W-

CJIW-ETNO1/ENT11, CJ1IW-ETN11 Ethernet Unit
Operation Manual

ETNO1, CJIW-ENT11, and CJ1IW-ETN11 Ether-
net Units.

&WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.

PRECAUTIONS

This section provides general precautionsfor using the CS/CJ-series Programmabl e Controllers (PLCs) and rel ated devices.

The information contained in this section is important for the safe and reliable application of Programmable
Controllers. You must read this section and understand the infor mation contained before attempting to set up or
operatea PL C system.

1 Intended Audience i Xii
2 Genera Precaltionst Xii
3 Safety Precautions.o Xii
4 Operating Environment Precautions.o in i Xiv
5 Application Precautionso Xiv
6 Conformanceto EC DirectiveS.o Xix
6-1 Applicable Directives. XixX
6-2 L0 1= o/ £ Xix
6-3 Conformanceto EC Directives., XiX
6-4 Relay Output Noise ReductionMethods XX

Xi

I ntended Audience 1

1 Intended Audience

This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

* Personnel in charge of installing FA systems.
 Personnel in charge of designing FA systems.
 Personnel in charge of managing FA systems and facilities.

2 General Precautions

The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be

sure to read this manual before attempting to use the Unit and keep this man-
ual close at hand for reference during operation.

&WARNING It is extremely important that a PLC and all PLC Units be used for the speci-
fied purpose and under the specified conditions, especially in applications that
can directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PLC System to the above-mentioned appli-
cations.

3 Safety Precautions

&WARNING The CPU Unit refreshes I/O even when the program is stopped (i.e., even in
PROGRAM mode). Confirm safety thoroughly in advance before changing the
status of any part of memory allocated to 1/0O Units, Special I1/O Units, or CPU
Bus Units. Any changes to the data allocated to any Unit may result in unex-
pected operation of the loads connected to the Unit. Any of the following oper-
ation may result in changes to memory status.

* Transferring I/O memory data to the CPU Unit from a Programming
Device.

» Changing present values in memory from a Programming Device.
* Force-setting/-resetting bits from a Programming Device.

» Transferring 1/0O memory files from a Memory Card or EM file memory to
the CPU Unit.

« Transferring 1/0 memory from a host computer or from another PLC on a
network.

&WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing
so may result in electric shock.

Xii

Safety Precautions

3

/\ WARNING

/\ WARNING

/\ WARNING

/\ WARNING

& Caution

& Caution

& Caution

& Caution

Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

Do not attempt to disassemble, repair, or modify any Units. Any attempt to do
so may result in malfunction, fire, or electric shock.

Do not touch the Power Supply Unit while power is being supplied or immedi-
ately after power has been turned OFF. Doing so may result in electric shock.

Provide safety measures in external circuits (i.e., not in the Programmable
Controller), including the following items, to ensure safety in the system if an
abnormality occurs due to malfunction of the PLC or another external factor
affecting the PLC operation. Not doing so may result in serious accidents.

« Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

e The PLC will turn OFF all outputs when its self-diagnosis function detects
any error or when a severe failure alarm (FALS) instruction is executed.
As a countermeasure for such errors, external safety measures must be
provided to ensure safety in the system.

e The PLC outputs may remain ON or OFF due to deposition or burning of
the output relays or destruction of the output transistors. As a counter-
measure for such problems, external safety measures must be provided
to ensure safety in the system.

* When the 24-V DC output (service power supply to the PLC) is over-
loaded or short-circuited, the voltage may drop and result in the outputs
being turned OFF. As a countermeasure for such problems, external
safety measures must be provided to ensure safety in the system.

Confirm safety before transferring data files stored in the file memory (Mem-
ory Card or EM file memory) to the I/O area (CIO) of the CPU Unit using a
peripheral tool. Otherwise, the devices connected to the output unit may mal-
function regardless of the operation mode of the CPU Unit.

Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes. Abnormal operation may
result in serious accidents.

Interlock circuits, limit circuits, and similar safety measures in external circuits
(i.e., not in the Programmable Controller) must be provided by the customer.
Abnormal operation may result in serious accidents.

The CS1-H, CJ1-H, CJ1M, and CS1D CPU Units automatically back up the
user program and parameter data to flash memory when these are written to
the CPU Unit. /O memory (including the DM, EM, and HR Areas), however, is
not written to flash memory. The DM, EM, and HR Areas can be held during
power interruptions with a battery. If there is a battery error, the contents of
these areas may not be accurate after a power interruption. If the contents of
the DM, EM, and HR Areas are used to control external outputs, prevent inap-
propriate outputs from being made whenever the Battery Error Flag (A40204)
is ON.

Xiii

Operating Environment Precautions 4

4

5

Xiv

& Caution

& Caution

& Caution

Execute online edit only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.

Confirm safety at the destination node before transferring a program to
another node or changing contents of the /O memory area. Doing either of
these without confirming safety may result in injury.

Tighten the screws on the terminal block of the AC Power Supply Unit to the
torque specified in the operation manual. The loose screws may result in
burning or malfunction.

Operating Environment Precautions

& Caution

& Caution

& Caution

Do not operate the control system in the following locations:

* Locations subject to direct sunlight.

* Locations subject to temperatures or humidity outside the range specified
in the specifications.

* Locations subject to condensation as the result of severe changes in tem-
perature.

« Locations subject to corrosive or flammable gases.

* Locations subject to dust (especially iron dust) or salts.

* Locations subject to exposure to water, oil, or chemicals.
* Locations subject to shock or vibration.

Take appropriate and sufficient countermeasures when installing systems in
the following locations:

« Locations subject to static electricity or other forms of noise.
« Locations subject to strong electromagnetic fields.

* Locations subject to possible exposure to radioactivity.

* Locations close to power supplies.

The operating environment of the PLC System can have a large effect on the
longevity and reliability of the system. Improper operating environments can
lead to malfunction, failure, and other unforeseeable problems with the PLC
System. Be sure that the operating environment is within the specified condi-
tions at installation and remains within the specified conditions during the life
of the system.

Application Precautions

Observe the following precautions when using the PLC System.

* You must use the CX-Programmer (programming software that runs on
Windows) if you need to program more than one task. A Programming
Console can be used to program only one cyclic task plus interrupt tasks.
A Programming Console can, however, be used to edit multitask pro-
grams originally created with the CX-Programmer.

Application Precautions 5

* There are restrictions in the areas and addresses that can be accessed in
I/O memory of the CS-series CS1 CPU Units when using the C200H Spe-
cial I/0 Units in combination with the following functions.

» There are restrictions in data transfer with the CPU Unit when pro-
gramming transfers inside an ASCII Unit using the PLC READ, PLC
WRITE, and similar commands.

» There are restrictions in data transfer with the CPU Unit for allocated
bits and DM area specifications (areas and addresses for source and
destination specifications).

» The DeviceNet (CompoBus/D) output area for a DeviceNet (Compo-
Bus/D) Master Unit (CIO 0050 to CIO 0099) overlaps with the I/O bit
area (CIO 0000 to CIO 0319). Do not use automatic allocations for I/O
in any system where allocations to the DeviceNet system will overlap
with allocations to I/O Units. Instead, use a Programming Device or the
CX-Programmer to manually allocate 1/O for the DeviceNet devices,
being sure that the same words and bits are not allocated more than
once, and transfer the resulting I/O table to the CPU Unit. If DeviceNet
communications are attempted when the same bits are allocated to
both DeviceNet devices and I/O Units (which can occur even if auto-
matic allocation is used), the DeviceNet devices and I/O Units may
both exhibit faulty operation.

Special bits and flags for PLC Link Units (CIO 0247 to CIO 0250) over-
lap with the 1/O bit area (CIO 0000 to CIO 0319). Do not use automatic
allocations for 1/0 in any system where allocations to the 1/0 Units will
overlap with allocations to I/0O Units. Instead, use a Programming De-
vice or the CX-Programmer to manually allocate 1/0O to I/O Units, being
sure that the special bits and flags for PLC Link Units are not used, and
transfer the resulting 1/0 table to the CPU Unit. If operation is attempt-
ed when the special bits and flags for PLC Link Units are also allocated
to 1/0 Units (which can occur even if automatic allocation is used), the
PLC Link Units and 1/O Units may both exhibit faulty operation.

&WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

* Always connect to a ground of 100 Q or less when installing the Units. Not
connecting to a ground of 100 Q or less may result in electric shock.

» A ground of 100 Q or less must be installed when shorting the GR and LG
terminals on the Power Supply Unit.

 Always turn OFF the power supply to the PLC before attempting any of
the following. Not turning OFF the power supply may result in malfunction
or electric shock.

» Mounting or dismounting Power Supply Units, /0O Units, CPU Units, In-
ner Boards, or any other Units.

» Assembling the Units.

« Setting DIP switches or rotary switches.

» Connecting cables or wiring the system.

» Connecting or disconnecting the connectors.

&Caution Failure to abide by the following precautions could lead to faulty operation of
the PLC or the system, or could damage the PLC or PLC Units. Always heed
these precautions.

XV

Application Precautions

5

XVi

e The user program and parameter area data in the CS1-H, CS1D, CJ1-H,
and CJ1M CPU Units are backed up in the built-in flash memory. The
BKUP indicator will light on the front of the CPU Unit when the backup
operation is in progress. Do not turn OFF the power supply to the CPU
Unit when the BKUP indicator is lit. The data will not be backed up if
power is turned OFF.

A CJ-series CPU Unit is shipped with the battery installed and the time
already set on the internal clock. It is not necessary to clear memory or
set the clock before application, as it is for the CS-series CS1 CPU Units.

When using a CS-series CS1 CPU Unit for the first time, install the
CS1W-BAT1 Battery provided with the Unit and clear all memory areas
from a Programming Device before starting to program. When using the
internal clock, turn ON power after installing the battery and set the clock
from a Programming Device or using the DATE(735) instruction. The clock
will not start until the time has been set.

When the CPU Unit is shipped from the factory, the PLC Setup is set so
that the CPU Unit will start in the operating mode set on the Programming
Console mode switch. When a Programming Console is not connected, a
CS-series CS1 CPU Unit will start in PROGRAM mode, but a CS1-H,
CS1D, CJ1, CJ1-H, or CJ1IM CPU Unit will start in RUN mode and opera-
tion will begin immediately. Do not advertently or inadvertently allow oper-
ation to start without confirming that it is safe.

When creating an AUTOEXEC.IOM file from a Programming Device (a
Programming Console or the CX-Programmer) to automatically transfer
data at startup, set the first write address to D20000 and be sure that the
size of data written does not exceed the size of the DM Area. When the
data file is read from the Memory Card at startup, data will be written in
the CPU Unit starting at D20000 even if another address was set when
the AUTOEXEC.IOM file was created. Also, if the DM Area is exceeded
(which is possible when the CX-Programmer is used), the remaining data
will be written to the EM Area.

Always turn ON power to the PLC before turning ON power to the control
system. If the PLC power supply is turned ON after the control power sup-
ply, temporary errors may result in control system signals because the
output terminals on DC Output Units and other Units will momentarily turn
ON when power is turned ON to the PLC.

Fail-safe measures must be taken by the customer to ensure safety in the
event that outputs from Output Units remain ON as a result of internal cir-
cuit failures, which can occur in relays, transistors, and other elements.

Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal
lines, momentary power interruptions, or other causes.

Interlock circuits, limit circuits, and similar safety measures in external cir-
cuits (i.e., not in the Programmable Controller) must be provided by the
customer.

Do not turn OFF the power supply to the PLC when data is being trans-
ferred. In particular, do not turn OFF the power supply when reading or
writing a Memory Card. Also, do not remove the Memory Card when the
BUSY indicator is lit. To remove a Memory Card, first press the memory
card power supply switch and then wait for the BUSY indicator to go out
before removing the Memory Card.

« If the 1/O Hold Bit is turned ON, the outputs from the PLC will not be
turned OFF and will maintain their previous status when the PLC is

Application Precautions

5

switched from RUN or MONITOR mode to PROGRAM mode. Make sure
that the external loads will not produce dangerous conditions when this
occurs. (When operation stops for a fatal error, including those produced
with the FALS(007) instruction, all outputs from Output Unit will be turned
OFF and only the internal output status will be maintained.)

The contents of the DM, EM, and HR Areas in the CPU Unit are backed
up by a Battery. If the Battery voltage drops, this data may be lost. Provide
countermeasures in the program using the Battery Error Flag (A40204) to
re-initialize data or take other actions if the Battery voltage drops.

When supplying power at 200 to 240 V AC with a CS-series PLC, always
remove the metal jumper from the voltage selector terminals on the Power
Supply Unit (except for Power Supply Units with wide-range specifica-
tions). The product will be destroyed if 200 to 240 V AC is supplied while
the metal jumper is attached.

Always use the power supply voltages specified in the operation manuals.
An incorrect voltage may result in malfunction or burning.

Take appropriate measures to ensure that the specified power with the
rated voltage and frequency is supplied. Be particularly careful in places
where the power supply is unstable. An incorrect power supply may result
in malfunction.

Install external breakers and take other safety measures against short-cir-
cuiting in external wiring. Insufficient safety measures against short-cir-
cuiting may result in burning.

Do not apply voltages to the Input Units in excess of the rated input volt-
age. Excess voltages may result in burning.

Do not apply voltages or connect loads to the Output Units in excess of
the maximum switching capacity. Excess voltage or loads may result in
burning.

» Disconnect the functional ground terminal when performing withstand
voltage tests. Not disconnecting the functional ground terminal may result
in burning.

Install the Units properly as specified in the operation manuals. Improper
installation of the Units may result in malfunction.

» With CS-series PLCs, be sure that all the Unit and Backplane mounting
screws are tightened to the torque specified in the relevant manuals.
Incorrect tightening torque may result in malfunction.

Be sure that all terminal screws, and cable connector screws are tight-
ened to the torque specified in the relevant manuals. Incorrect tightening
torque may result in malfunction.

Leave the label attached to the Unit when wiring. Removing the label may
result in malfunction if foreign matter enters the Unit.

Remove the label after the completion of wiring to ensure proper heat dis-
sipation. Leaving the label attached may result in malfunction.

Use crimp terminals for wiring. Do not connect bare stranded wires
directly to terminals. Connection of bare stranded wires may result in
burning.

» Wire all connections correctly.

» Double-check all wiring and switch settings before turning ON the power
supply. Incorrect wiring may result in burning.

* Mount Units only after checking terminal blocks and connectors com-
pletely.

XVii

Application Precautions

5

Xviii

» Be sure that the terminal blocks, Memory Units, expansion cables, and
other items with locking devices are properly locked into place. Improper
locking may result in malfunction.

Check switch settings, the contents of the DM Area, and other prepara-
tions before starting operation. Starting operation without the proper set-
tings or data may result in an unexpected operation.

Check the user program for proper execution before actually running it on
the Unit. Not checking the program may result in an unexpected opera-
tion.

Confirm that no adverse effect will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

» Changing the operating mode of the PLC.
* Force-setting/force-resetting any bit in memory.
» Changing the present value of any word or any set value in memory.

Resume operation only after transferring to the new CPU Unit the con-
tents of the DM Area, HR Area, and other data required for resuming
operation. Not doing so may result in an unexpected operation.

Do not pull on the cables or bend the cables beyond their natural limit.
Doing either of these may break the cables.

Do not place objects on top of the cables or other wiring lines. Doing so
may break the cables.

Do not use commercially available RS-232C personal computer cables.
Always use the special cables listed in this manual or make cables
according to manual specifications. Using commercially available cables
may damage the external devices or CPU Unit.

Never connect pin 6 (5-V power supply) on the RS-232C port on the CPU
Unit to any device other than an NT-AL001 or CJ1W-CIF11 Adapter.The
external device or the CPU Unit may be damaged.

When replacing parts, be sure to confirm that the rating of a new part is
correct. Not doing so may result in malfunction or burning.

Before touching a Unit, be sure to first touch a grounded metallic object in
order to discharge any static build-up. Not doing so may result in malfunc-
tion or damage.

When transporting or storing circuit boards, cover them in antistatic mate-
rial to protect them from static electricity and maintain the proper storage
temperature.

Do not touch circuit boards or the components mounted to them with your
bare hands. There are sharp leads and other parts on the boards that
may cause injury if handled improperly.

Do not short the battery terminals or charge, disassemble, heat, or incin-
erate the battery. Do not subject the battery to strong shocks. Doing any
of these may result in leakage, rupture, heat generation, or ignition of the
battery. Dispose of any battery that has been dropped on the floor or oth-
erwise subjected to excessive shock. Batteries that have been subjected
to shock may leak if they are used.

UL standards required that batteries be replaced only by experienced
technicians. Do not allow unqualified persons to replace batteries.

With a CJ-series PLC, the sliders on the tops and bottoms of the Power
Supply Unit, CPU Unit, 1/O Units, Special I/O Units, and CPU Bus Units
must be completely locked (until they click into place). The Unit may not
operate properly if the sliders are not locked in place.

Conformance to EC Directives 6

» With a CJ-series PLC, always connect the End Plate to the Unit on the
right end of the PLC. The PLC will not operate properly without the End
Plate

» Unexpected operation may result if inappropriate data link tables or
parameters are set. Even if appropriate data link tables and parameters
have been set, confirm that the controlled system will not be adversely
affected before starting or stopping data links.

» CPU Bus Units will be restarted when routing tables are transferred from
a Programming Device to the CPU Unit. Restarting these Units is
required to read and enable the new routing tables. Confirm that the sys-
tem will not be adversely affected before allowing the CPU Bus Units to
be reset.

6 Conformance to EC Directives

6-1 Applicable Directives

6-2 Concepts

Note

* EMC Directives
» Low Voltage Directive

EMC Directives

OMRON devices that comply with EC Directives also conform to the related
EMC standards so that they can be more easily built into other devices or the
overall machine. The actual products have been checked for conformity to
EMC standards (see the following note). Whether the products conform to the
standards in the system used by the customer, however, must be checked by
the customer.

EMC-related performance of the OMRON devices that comply with EC Direc-
tives will vary depending on the configuration, wiring, and other conditions of
the equipment or control panel on which the OMRON devices are installed.
The customer must, therefore, perform the final check to confirm that devices
and the overall machine conform to EMC standards.

Applicable EMC (Electromagnetic Compatibility) standards are as follows:

EMS (Electromagnetic Susceptibility):
CS Series: EN61131-2 and EN61000-6-2
CJ Series: EN61000-6-2
EMI (Electromagnetic Interference):
EN50081-2
(Radiated emission: 10-m regulations)
Low Voltage Directive

Always ensure that devices operating at voltages of 50 to 1,000 V AC and 75
to 1,500 V DC meet the required safety standards for the PLC (EN61131-2).

6-3 Conformance to EC Directives

1,23..

The CS/CJ-series PLCs comply with EC Directives. To ensure that the
machine or device in which the CS/CJ-series PLC is used complies with EC
Directives, the PLC must be installed as follows:

1. The CS/CJ-series PLC must be installed within a control panel.

2. You must use reinforced insulation or double insulation for the DC power
supplies connected to DC Power Supply Units and 1/0O Units.

XiX

Conformance to EC Directives 6

6-4

Countermeasures

Countermeasure Exam

3. CS/CJ-series PLCs complying with EC Directives also conform to the
Common Emission Standard (EN50081-2). Radiated emission character-
istics (10-m regulations) may vary depending on the configuration of the
control panel used, other devices connected to the control panel, wiring,
and other conditions. You must therefore confirm that the overall machine
or equipment complies with EC Directives.

Relay Output Noise Reduction Methods

The CS/CJ-series PLCs conforms to the Common Emission Standards
(EN50081-2) of the EMC Directives. However, noise generated by relay out-
put switching may not satisfy these Standards. In such a case, a noise filter
must be connected to the load side or other appropriate countermeasures
must be provided external to the PLC.

Countermeasures taken to satisfy the standards vary depending on the
devices on the load side, wiring, configuration of machines, etc. Following are
examples of countermeasures for reducing the generated noise.

(Refer to EN50081-2 for more details.)

Countermeasures are not required if the frequency of load switching for the
whole system with the PLC included is less than 5 times per minute.

Countermeasures are required if the frequency of load switching for the whole
system with the PLC included is more than 5 times per minute.

les

When switching an inductive load, connect an surge protector, diodes, etc., in
parallel with the load or contact as shown below.

load. If the supply voltage is 100 to
200 V, insert the surge protector
between the contacts.

Circuit Current Characteristic Required element
AC DC
CR method Yes Yes If the load is a relay or solenoid, there is | The capacitance of the capacitor must
_ a time lag between the moment the cir- | be 1 to 0.5 pF per contact current of
- cuit is opened and the moment the load | 1 A and resistance of the resistor must
1 5 C o is reset. be 0.5 to 1 Q per contact voltage of 1 V.
@ SSS”pe& So If the supply voltage is 24 or 48 V, insert | These values, however, vary with the
\ R= 28 the surge protector in parallel with the | l0ad and the characteristics of the

relay. Decide these values from experi-
ments, and take into consideration that
the capacitance suppresses spark dis-
charge when the contacts are sepa-
rated and the resistance limits the
current that flows into the load when
the circuit is closed again.

The dielectric strength of the capacitor
must be 200 to 300 V. If the circuit is an
AC circuit, use a capacitor with no
polarity.

XX

Conformance to EC Directives

Characteristic

Required element

The diode connected in parallel with
the load changes energy accumulated
by the coil into a current, which then
flows into the coil so that the current will
be converted into Joule heat by the
resistance of the inductive load.

This time lag, between the moment the
circuit is opened and the moment the
load is reset, caused by this method is
longer than that caused by the CR
method.

The reversed dielectric strength value
of the diode must be at least 10 times
as large as the circuit voltage value.
The forward current of the diode must
be the same as or larger than the load
current.

The reversed dielectric strength value
of the diode may be two to three times
larger than the supply voltage if the
surge protector is applied to electronic
circuits with low circuit voltages.

Circuit Current
AC DC
Diode method No Yes
—
2
[¥ 29
Power i=xe]
supply
Yes Yes

Varistor method

Inductive
load

The varistor method prevents the impo-
sition of high voltage between the con-
tacts by using the constant voltage
characteristic of the varistor. There is
time lag between the moment the cir-
cuit is opened and the moment the load
is reset.

If the supply voltage is 24 or 48V, insert
the varistor in parallel with the load. If
the supply voltage is 100 to 200V,
insert the varistor between the con-
tacts.

When switching a load with a high inrush current such as an incandescent
lamp, suppress the inrush current as shown below.

Countermeasure 1

ouT X

COM

Providing a dark current of
approx. one-third of the rated
value through an incandescent
lamp

Countermeasure 2

R
ouT

+

COM

Providing a limiting resistor

XXi

Conformance to EC Directives

XXii

SECTION 1
CPU Unit Operation

This section describes the basic structure and operation of the CPU Unit.

1-1 Initial Setup (CSLCPU UnitsOnly)o v oi e 2
1-2 Using the Interna Clock (CS1 CPU UnitsOnly). 5
1-3 Interna Structureof theCPU UNit.......... 6
1-3-1 OVEIVIOW. .ot 6
1-3-2 Block Diagramof CPU UnitMemory 7
1-4 Operating Modes.ot 8
1-4-1 Description of OperatingModescccivvunan.. 8
1-4-2 Initidizationof /OMemory ... 10
1-4-3 StartupMode 11
1-5 Programsand Tasks. oottt 12
1-6 Deseription of TasksS . ..o vt e e 14

Initial Setup (CS1 CPU Units Only) Section 1-1

1-1 Initial Setup (CS1 CPU Units Only)

Battery Installation Before using a CS1CPU Unit, you must install the Battery Set in the CPU Unit
using the following procedure.

1,2,3... 1. Insert a flat-blade screwdriver in the small gap at the bottom of the battery
compartment and flip the cover upward to open it.

I nitial Setup (CS1 CPU Units Only) Section 1-1

2. Hold the Battery Set with the cable facing outward and insert it into the bat-
tery compartment.

Battery compartment

\/

3. Connect the battery connector to the battery connector terminals. Connect
the red wire to the top and the white wire to the bottom terminal. There are
two sets of battery connector terminals; connect the battery to either one.
It does not matter whether the top terminals or bottom terminals are used.

\/

Battery connector terminals
(Connect to either set of terminals.)

Initial Setup (CS1 CPU Units Only) Section 1-1

Clearing Memory

4. Fold in the cable and close the cover.

\/ \/

After installing the battery, clear memory using the memory clear operation to
initialize the RAM inside the CPU Unit.

Programming Console
Use the following procedure from a Programming Console.

~EEEEDE0) @

Clearing Errors

Note

Note

You cannot specify more than one cyclic task when clearing memory from a
Programming Console. You can specify one cyclic task and one interrupt task,
or one cyclic task and no interrupt task. Refer to the Operation Manual for
more information on the memory clear operation. Refer to SECTION 1 CPU
Unit Operation and SECTION 4 Tasks for more information on tasks.

CX-Programmer

Memory can also be cleared from the CX-Programmer. Refer to the CX-Pro-
grammer Operation Manual for the actual procedure.

After clearing memory, clear any errors from the CPU Unit, including the low
battery voltage error.

Programming Console
Use the following procedure from a Programming Console.

Initial display —> [FUN MON E

(Displayed error will be cleared.)

[

(Returns to the initial display.)

MON
ON

CX-Programmer

Errors can also be cleared from the CX-Programmer. Refer to the CX-Pro-
grammer Operation Manual for the actual procedure.

When an Inner Board is mounted, an Inner Board routing table error may con-
tinue even after you have cancelled the error using the CX-Programmer.
(A42407 will be ON for a Serial Communications Board.) If this occurs, either
reset the power or restart the Inner Board, then cancel the error again.

Using_] the Internal Clock (CS1 CPU Units Only) Section 1-2

1-2 Using the Internal Clock (CS1 CPU Units Only)

Key Sequence

The internal clock of the CPU Unit is set to “00 year, 01 month, 01 day (00-01-
01), 00 hours, 00 minutes, 00 seconds (00:00:00), and Sunday (SUN)” when
the Battery Set is mounted in the CS-series CPU Unit.

When using the internal clock, turn ON the power supply after mounting the
Battery Set and 1) use a Programming Device (Programming Console or CX-
Programmer) to set the clock time, 2) execute the CLOCK ADJUSTMENT
(DATE) instruction, or 3) send a FINS command to start the internal clock from
the correct current time and date.

The Programming Console operation used to set the internal clock is shown
below.

Initial display

e 3 2] o o 3 e o O [e

Specify: Yr Mo Day Hr Min S

?

Internal Structure of the CPU Unit Section 1-3

1-3 Internal Structure of the CPU Unit

1-3-1 Overview

The following diagram shows the internal structure of the CPU Unit.

CPU Unit The programm is divided
/ into tasks and the tasks

/ ggkeégr%ubteeg in order by

User program

//
<
f 1/0 memory, PC Setup,
L Access| Memory Card programs and the EM area
A can be saved as files.
Auto- 2171
matic 1/0 memory ﬂ
backup
EM file memory
Y __ Auto-
Flash matic |PLC Setup
memory backup|and other
parameters
e / DIP switch
(CS1-H, CS1Db, CJ1-H,
or CJ1M CPU Units only)

The User Program

I/O Memory

Note

The user program is created from up to 288 program tasks, including interrupt
tasks. The tasks are transferred to the CPU Unit from the CX-Programmer
programming software.

There are two types of tasks. The first is a cyclic task that is executed once
per cycle (maximum of 32) and the other is an interrupt task that is executed
only when the interrupt conditions occur (maximum of 256). Cyclic tasks are
executed in numerical order.

1. With a CS1-H, CJ1-H, CJ1M, or CS1D CPU Unit, interrupt tasks can be
executed cyclically in the same way as cyclic tasks. These are called “extra
cyclic tasks.” The total number of tasks that can be executed cyclically
must be 288 or less.

2. When using the CX-Programmer, use version 2.1 or later for a CS1-H or
CJ1-H CPU Unit and version 3.0 or later for a CJ1M or CS1D CPU Unit.

Program instructions read and write to I/O memory and are executed in order
starting at the top of the program. After all cyclic tasks are executed, the 1/0
for all Units are refreshed, and the cycle repeats again starting at the lowest
cyclic task number.

Refer to the section on CPU Unit operation in the CS/CJ Series Operation
Manual for details on refreshing I/O.

I/O memory is the RAM area used for reading and writing from the user pro-
gram. It is comprised of one area that is cleared when power is turned ON and
OFF, and another area that will retain data.

I/O memory is also partitioned into an area that exchanges data with all Units
and an area strictly for internal use. Data is exchanged with all Units once per
program execution cycle and also when specific instructions are executed.

Internal Structure of the CPU Unit Section 1-3

PLC Setup

DIP Switches

Memory Cards

Flash Memory (CS1-H,
CJ1-H, CJIM, or CS1D
CPU Unit Only)

The PLC Setup is used to set various initial or other settings through software
switches.

DIP switches are used to set initial or other settings through hardware
switches.

Memory Cards are used as needed to store data such as programs, I/O mem-
ory data, the PLC Setup, and I/O comments created by Programming
Devices. Programs and various system settings can be written automatically
from the Memory Card when power is turned ON (automatic transfer at star-

tup).

With a CS1-H, CJ1-H, CJ1M, or CS1D CPU Unit, the user program and
parameter area data, such as the PLC Setup, are automatically backed up in
the built-in flash memory whenever the user writes data to the CPU Unit. This
enables battery-free operation without using a Memory Card. I/O memory,
including most of the DM Area, are not backed up without a battery.

1-3-2 Block Diagram of CPU Unit Memory

CPU Unit memory (RAM) is comprised of the following blocks in the CS/CJ
Series:

» Parameter area (PLC Setup, registered 1/O table, routing table, and CPU
Bus Unit settings)

* /0O memory areas
» The user program

Data in the parameter area and 1/O memory areas is backed up by a Battery
(CS Series: CS1IW-BAT01, CJ1-H: CPM2A-BAT01), and will be lost if battery
power is low.

The CS1-H, CJ1-H, CJ1M, or CS1D CPU Units, however, provide a built-in
flash memory for data backup. The user program and parameter area data
are automatically backed up in the built-in flash memory whenever the user
writes data to the CPU Unit from a Programming Device (e.g., CX-Program-
mer or Programming Console), including the following operations: Data trans-
fers, online editing, transfers from Memory Cards, etc. This means that the
user program and parameter area data will not be lost even if the battery volt-
age drops.

Operati ngM odes

Section 1-4

CPU Unit

Flash Memory

(CS1-H, CJ1-H, CI1M, or
CS1D CPU Units only)

User program

Parameter area

' Parameter area
oy (See note 1.) j

Built-in RAM

I/O memory area

Drive 1: EM file memory
(See note 2.)

Backup
User program ¢ Battery

A newly mounted battery will be good up to
\five years at an ambient temperature of 25°C

Drive 0: Memory card
(flash memory)

/

File memory

Note

Automatically backed up to flash memory whenever

S a write operation for the user program or parameter

area is performed from a Programming Device.

The parameter area and user program (i.e., the user memory) can be
write-protected by turning ON pin 1 of the DIP switch on the front of the
CPU Unit.

EM file memory is part of the EM Area that has been converted to file
memory in the PLC Setup. All EM banks from the specified bank to the end
of the EM Area can be used only as file memory for storage of data and
program files.

Be sure to install the battery provided (CS1W-BAT01) before using a CS1
CPU Unit for the first time. After installing the battery, use a Programming
Device to clear the PLC's RAM (parameter area, /O memory area, and
user program).

A Battery is mounted to a CS1-H, CJ1, CJ1-H, CJ1M, or CS1D CPU Unit

when it is shipped from the factory. There is no need to clear memory or
set the time.

The BKUP indicator on the front of the CPU Unit will light while data is be-
ing written to flash memory. Do not turn OFF the power supply to the CPU
Unit until the backup operation has been completed (i.e., until the BKUP
indicator goes out). Refer to 6-6-10 Flash Memory for details.

1-4 Operating Modes

1-4-1

PROGRAM Mode

Description of Operating Modes

The following operating modes are available in the CPU Unit. These modes
control the entire user program and are common to all tasks.

Program execution stops in PROGRAM mode, and the RUN indicator is not lit.
This mode is used when editing the program or making other preparations
operation, such as the following:

Operati ng M odes

Section 1-4

/\ WARNING

MONITOR Mode

RUN Mode

Note

* Registering the I/O table.

» Changing PLC Setup and other settings.

» Transferring and checking programs.

» Force-setting and resetting bits to check wiring and bit allocation.

In this mode, all cyclic and interrupt tasks are non-executing (INI), that is they
stop. See 1-6 Description of Tasks for more details on tasks.

I/O refreshing is performed in PROGRAM mode. Refer to the Operation Man-
ual for information on refreshing I/O.

The CPU Unit refreshes I/O even when the program is stopped (i.e., even in
PROGRAM mode). Confirm safety thoroughly in advance before changing the
status of any part of memory allocated to 1/0 Units, Special I/O Units, or CPU
Bus Units. Any changes to the data allocated to any Unit may result in unex-
pected operation of the loads connected to the Unit. Any of the following oper-
ation may result in changes to memory status.

* Transferring I/O memory data to the CPU Unit from a Programming
Device.

» Changing present values in memory from a Programming Device.
* Force-setting/-resetting bits from a Programming Device.

« Transferring 1/0 memory files from a Memory Card or EM file memory to
the CPU Unit.

« Transferring 1/0 memory from a host computer or from another PLC on a
network.

The following operations can be performed through Programming Devices
while the program is executing in MONITOR mode. The RUN indicator will be
lit. This mode is used to make test runs or other adjustments.

* Online Editing.
* Force-setting and force-resetting bits.
» Changing values in /O memory.

In this mode, the cyclic tasks specified for execution at startup (see note) and
those are made executable by TKON(820) will be executed when program
execution reaches their task number. Interrupt tasks will be executed if their
interrupt conditions occur.

The tasks that are executed at startup are specified in the program properties
from the CX-Programmer.

This mode is used for normal program execution. The RUN indicator will be lit.
Some Programming Device operations like online editing, force-set/force-
reset, and changing I/O memory values are disabled in this mode, but other
Programming Device operations like monitoring the status of program execu-
tion (monitoring programs and monitoring 1/O memory) are enabled.

Use this mode for normal system operation. Task execution is the same as in
MONITOR mode.

See 10-2 CPU Unit Operating Modes in the Operation Manual for more details
on operations that are available in each operating mode.

Operati ngM odes

Section 1-4

1-4-2

10

Initialization of I/O Memory

The following table shows which data areas will be cleared when the operat-
ing mode is changed from PROGRAM mode to RUN/MONITOR mode or vice-

Note

versa.
Mode change Non-held Areas Held Areas
(Note 1) (Note 2)
RUN/MONITOR - PROGRAM | Clear (Note 3) Retained
PROGRAM - RUN/MONITOR | Clear (Note 3) Retained
RUN « MONITOR Retained Retained

1. Non-held areas: CIO Area, Work Area, Timer PVs, Timer Completion
Flags, Index Registers, Data Registers, Task Flags, and Condition Flags.
(The statuses of some addresses in the Auxiliary Area are held and others

are cleared.)

2. Held areas: Holding Area, DM Area, EM Area, Counter PVs, and Counter

Completion Flags.

3. Datain /O memory will be retained when the IOM Hold Bit (A50012) is ON.
When the IOM Hold Bit (A50012) is ON and operation is stopped due to a
fatal error (including FALS(007)), the contents of I/O memory will be re-
tained but outputs on Output Units will all be turned OFF.

Operati ng M odes

Section 1-4

1-4-3 Startup Mode

Note

Refer to the Operation Manual for details on the Startup Mode setting for the

CPU Unit.

With CJ1, CS1-H, CJ1-H, CJ1M, or CS1D CPU Units, the CPU Unit will start
in RUN Mode if a Programming Console is not connected. This differs from
the default operation for a CS1 CPU Unit, which will start in PROGRAM Mode
by default if a Programming Console is not connected.

connected.

the mode set on the Programming Con-
sole, but a Programming Console is not

Conditions CS1 CPU Unit CJ1,CS1-H,CJ1-H,
CJ1M, or CS1D
CPU Unit
PLC Setup is set to start according to PROGRAM mode RUN mode

(Power turned ON. >

PLC Setup set
for mode on
Programming
Console?

Programming
Console
connected?

CJ1, CS1-H, CJ1-H, or CJIM
CPU Unit: CPU Unit starts in
RUN mode.

CS1 CPU Unit: CPU Unit
starts in PROGRAM mode.

Setup.

The CPU Unit will start in
the mode set in the PLC

The CPU Unit will startin
the mode set on the
Programming Console.

11

Prog_;rams and Tasks

Section 1-5

1-5 Programs and Tasks

12

1,2,3...

Tasks specify the sequence and interrupt conditions under which individual
programs will be executed. They are broadly grouped into the following types:

1. Tasks executed sequentially that are called cyclic tasks.
2. Tasks executed by interrupt conditions that are called interrupt tasks.

Note With the CS1-H, CJ1-H, CJ1M, or CS1D CPU Units, interrupt tasks can be

executed cyclically in the same way as cyclic tasks. These are called “extra
cyclic tasks.”

Programs allocated to cyclic tasks will be executed sequentially by task num-
ber and I/O will be refreshed once per cycle after all tasks (more precisely
tasks that are in executable status) are executed. If an interrupt condition
goes into effect during processing of the cyclic tasks, the cyclic task will be
interrupted and the program allocated to the interrupt task will be executed.

Refer to the section on CPU Unit operation in the CS/CJ Series Operation
Manual for information in refreshing I/O.

Program A

>
o i
Qi
SR
5 |
>

Interrupt condition

goes into effect Program B
’ INtEITUP Y]
‘— task 100 | C
@ Allocation

................................. Program C

Allocation e |

% Program D
T —

| I/O refreshing l
—1

In the above example, programming would be executed in the following order:
start of A, B, remainder of A, C, and then D. This assumes that the interrupt
condition for interrupt task 100 was established during execution of program
A. When execution of program B is completed, the rest of program A would be
executed from the place where execution was interrupted.

With earlier OMRON PLCs, one continuous program is formed from several
continuous parts. The programs allocated to each task are single programs
that terminate with an END instruction, just like the single program in earlier
PLCs.

il

1l

Programs and Tasks

Section 1-5

One feature of the cyclic tasks is that they can be enabled (executable status)
and disabled (standby status) by the task control instructions. This means that
several program components can be assembled as a task, and that only spe-
cific programs (tasks) can then be executed as needed for the current product
model or process being performed (program step switching). Therefore perfor-
mance (cycle time) is greatly improved because only required programs will
be executed as needed.

Earlier system

One continuousl

subprogram Allocation

S04

H 1 H
—M——D\‘
l

| I/O refreshing I

CS/CJ Series

Task 1

b:ﬁi

!

l I/O refreshing l

I

Tasks can be put into non-
Task 2 // executing (standby) status.

A task that has been executed will be executed in subsequent cycles, and a
task that is on standby will remain on standby in subsequent cycles unless it is
executed again from another task.

Note Unlike earlier programs that can be compared to reading a scroll, tasks can
be compared to reading through a series of individual cards.

« All cards are read in a preset sequence starting from the lowest number.

* All cards are designated as either active or inactive, and cards that are
inactive will be skipped. (Cards are activated or deactivated by task con-
trol instructions.)

13

Description of Tasks Section 1-6

* A card that is activated will remain activated and will be read in subse-
guent sequences. A card that is deactivated will remain deactivated and
will be skipped until it is reactivated by another card.

Earlier program: CS/CJ-series program:

Like a scroll Like a series of cards that can be activated
or deactivated by other cards.

Activated Deactivated

1-6 Description of Tasks
Tasks are broadly grouped into the following types:

1,2,3... 1. Cyclic tasks (32 max.)

Tasks that will be executed once per cycle if executable. Execution can
also be disabled for cyclic tasks if required.

2. Interrupt tasks

Tasks that are executed when the interrupt occurs whether or not a cyclic

task is being executed. Interrupt tasks (see notes 1 and 2) are grouped into

the following four types (five types including the extra cyclic tasks for CS1-

H, CJ1-H, CJ1M, or CS1D CPU Units):

a) Power OFF interrupt task (Not supported by CS1D CPU Units):
Executed when power is interrupted. (1 max.)

b) Scheduled interrupt task (Not supported by CS1D CPU Units):
Executed at specified intervals. (2 max.).

c) 1/O interrupt task (Not supported by CJ1 or CS1D CPU Units):
Executed when an Interrupt Input Unit input turns ON (32 max.).

d) External interrupt task (Not supported by CJ1 or CS1D CPU Units):
Executed (256 max.) when requested by an Special /0 Unit, CPU
Bus Unit, or Inner Board (CS Series only).

e) Extra cyclic tasks (Supported only by CS1-H, CJ1-H, CJ1M, and

CS1D CPU Units):
Interrupt tasks that are treated as cyclic tasks. Extra cyclic tasks
are executed once every cycle as long as they are in an executable
condition.
A total of 288 tasks with 288 programs can be created and controlled with the
CX-Programmer. These include up to 32 cyclic tasks and 256 interrupt tasks.

Note 1. CJ1CPU Units do not currently support I/O interrupt tasks and external in-
terrupt tasks. The maximum number of tasks for a CJ1 CPU Unit is thus
35, i.e., 32 cyclic tasks and 3 interrupt tasks. The total number of programs
that can be created and managed is also 35.

14

Description of Tasks Section 1-6

2. The CS1D CPU Units do not support any interrupt tasks. Interrupt tasks,
however, can be used as extra cyclic tasks with CS1D CPU Units.

Each program is allocated 1:1 to a task through individual program property
settings set with the CX-Programmer.

A
Cyclic task 0 I
]
O

END Interrupt task 5

Executed in order starting
from the lowest number. l
Cyclic task 1

Cyclic task 2

Note Condition Flags (ER, >, =, etc.) and instruction
conditions (interlock ON, etc.) are cleared at the
beginning of each task.

LT

I/O refreshing

Peripheral processing

i

Program Structure Standard subroutine programs can be created and allocated to tasks as
needed to create programs. This means that programs can be created in
modules (standard components) and that tasks can be debugged individually.

Standard subroutine programs

A B C D
User program ABC User program ABD
Task 1 (A) Task 1 (A)
Task 2 (B) Task 2 (B)
Task 3 (C) Task 3 (D)

When creating modular programs, addresses can be specified by symbols to
facilitate standardization.

15

Description of Tasks

Section 1-6

Executable and Standby

Status

16

The TASK ON and TASK OFF instructions (TKON(820) and TKOF(821)) can
be executed in one task to place another task in executable or standby status.

Instructions in tasks that are on standby will not be executed, but their I/O sta-
tus will be maintained. When a task is returned to executable status, instruc-
tions will be executed with the 1/O status that was maintained.

Example: Programming with a Control Task

In this example, task O is a control task that is executed first at the start of
operation. Other tasks can be set from the CX-Programmer (but not a Pro-
gramming Console) to start or not to start at the beginning of operation.

Once program execution has been started, tasks can be controlled with
TKON(820) and TKOF(821).

Task 0

Program e
.......................... .
Task 0 (control task) b TKON 1
Task 1 - TKOF 1 |
\'\ C
Task 2 - TKON_2
Task 3 d TKON 3
| T lkoF 2
AN TKOF_3
Example: Task O is set to be executed at the start of operation
(set in the program properties from the CX-Programmer).
Task 1 is executable when a is ON.
Task 1 is put on standby when b is ON.
Tasks 2 and 3 are executable when c is ON.
Tasks 2 and 3 are put on standby when d is ON.
Start task 1 Put task 1 on
} vcgr’llen ais ! standby when :
Task 0 ' Task 0 bis ON. Task 0
Task 1 :—) Task 1 :-] Task 1
—» -
Task 2 Task 2 Task 2
Task 3 Task 3 Task 3
| L 3 3
S Start tasks 2—¢ Puttasks2 [
and 3 when and 3 on
Task O c is ON. Task 0 standby Task 0
when d is
Task 1 Task 1 ON. Task 1
- -
Task 2 Task 2 Task 2
Task 3 Task 3 Task 3

Description of Tasks Section 1-6

Example: Each Task Controlled by Another Task
In this example, each task is controlled by another task.

Program Program for task 0
a
Task 0 TKON 1
b
Task 1 —1 TKOF 1
Task 2 ~
~-.._Program for task 1
.
—Q TKON 2
Example: Task 1 is set to be executed at the start of operation
unconditionally.
Task 1 executable when a is ON.
Task 1 put on standby when b is ON.
Task 2 is executable when c is ON and task 1 has
been executed.
Start task 1
when a is 3
! ON. : Put task 1
on standby
Task 0 :—_] Task O j when b is Task O
Task 1 Task 1 ON. Task 1
...’ >
Task 2 Task 2 Task 2
If task 1 executed
Note TKOF(821) can be used in a task to put that Start
task itself on standby. task 2 Task 0
when ¢
is ON. Task 1
—
Task 2

17

Description of Tasks

Section 1-6

Task Execution Time

18

Note

While a task is on standby, instructions in that task are not executed, so their
OFF instruction execution time will not be added to the cycle time.

From this standpoint, instructions in a task that is on standby are just like
instructions in a jumped program section (JMP-JME).

Since instructions in a non-executed task do not add to the cycle time, the
overall system performance can be improved significantly by splitting the sys-
tem into an overall control task and individual tasks that are executed only
when necessary.

Earlier system CS/CJ-series PLCs
Most instructions .
are executed. Task 0 :
(Instructions in Ier;(set(r:tdtt:élg %‘? %re
subroutines and Task 1
jumps are _ when necessary.
executed only
when neces Task 2
sary.)
Task 3

SECTION 2

Programming
This section basic information required to write, check, and input programs.
2-1 BasiC CONCEDIS . o v vttt e 20
2-1-1 Programsand TasksSo vei it 20
2-1-2 BasicInformationonInstructions 21
2-1-3 Instruction Location and Execution Conditions. 23
2-1-4 Addressing /OMemMOory Are€as.o vvin i 24
2-1-5 SpecifyingOperands.t 25
2-1-6 DalaFormats. oot 30
2-1-7 Instruction Variationst 34
2-1-8 Execution Conditions.oovii i 34
2-1-9 HOInstruction TiIMiNGo ottt 37
2-1-10 Refresh Timing.coiii i e e 39
2-1-11 Program CapacCityo o vt 42
2-1-12 Basic Ladder Programming Conceptsccovvivvnnnn.. 42
2-1-13 Inputting MNEMONICSottt 47
2-1-14 ProgramExamples. ... 50
2-2 PreCaltionsottt 55
2-2-1 ConditionFlags.o oot e 55
2-2-2 Special Program Sections.o 60
2-3 Checking Programs. oo ittt et e 64
2-3-1 FErrorsduring Programming Devicelnput 64
2-3-2 Program Checks with the CX-Programmer 64
2-3-3 Program ExecutionCheck 66
2-3-4 CheckingFatal Errors. ... 68

19

Basic Concepts

Section 2-1

2-1
2-1-1

20

Basic Concepts

Programs and Tasks

e Program C
Allocated

CS/CJ-series PLCs execute ladder-diagram programs contained in tasks. The
ladder-diagram program in each task ends with an END(001) instruction just
as with conventional PLCs.

Tasks are used to determine the order for executing the ladder-diagram pro-
grams, as well as the conditions for executing interrupts.

Program A

Allocated et

Interrupt condition met.

Interrupt \&.
task

Allocated

program ends with an

> Each ladder-diagram
END(001) instruction.

I 1/0 refresh l

|—

Note

—

This section describes the basic concepts required to write CS/CJ-series pro-
grams. See SECTION 4 Tasks for more information on tasks and their rela-
tionship to ladder-diagram programs.

Tasks and Programming Devices

Tasks are handled as described below on the Programming Devices. Refer to
4-4 Programming Device Operations for Tasks and to the CS/CJ-series Pro-
gramming Consoles Operation Manual (W341) and CX-Programmer Opera-
tion Manual for more details.

CX-Programmer

The CX-Programmer is used to designate task types and task numbers as
attributes for individual programs.

Programming Console

Programs are accessed and edited on a Programming Console by specifying
CTO0O0 to CT 31 for cyclic tasks and ITOO to IT255 for interrupt tasks. When the
memory clear operation is performed with a Programming Console, only
cyclic task 0 (CT0O) can be written in a new program. Use CX-Programmer to
create cyclic tasks 1 through 31 (CTO1 through CT31).

Basic Concepts

Section 2-1

2-1-2 Basic Information on Instructions

Instruction condition

Flags

Programs consist of instructions. The conceptual structure of the inputs to and
outputs from an instruction is shown in the following diagram.

Power flow (P.F., execution condition)————» ——— Power flow (P.F., execution condition)*"
—> Instruction » Instruction condition*?
—> ——— Flag
T l *1: Input instructions only.
Operands Operands *2: Not output for all instructions.

Power Flow

Input Instructions

Output Instructions

Instruction Conditions

(sources) (destinations)

Memory

The power flow is the execution condition that is used to control the execute
and instructions when programs are executing normally. In a ladder program,
power flow represents the status of the execution condition.

* Load instructions indicate a logical start and outputs the execution condi-
tion.
Outputs the

/ execution condition.

=l e’

* Intermediate instructions input the power flow as an execution condition
and output the power flow to an intermediate or output instruction.

Outputs the
execution condition.

| =10

D00000
#1215

Output instructions execute all functions, using the power flow as an execution

condition.
LD power flow Power flow for
|/ output instruction
I ||
i O
\ / N\ /
Input block Output block

Instruction conditions are special conditions related to overall instruction exe-
cution that are output by the following instructions. Instruction conditions have
a higher priority than power flow (P.F.) when it comes to deciding whether or
not to execute an instruction. An instruction may become not be executed or
may act differently depending on instruction conditions. Instruction conditions

21

Basic Concepts Section 2-1
are reset (canceled) at the start of each task, i.e., they are reset when the task
changes.

The following instructions are used in pairs to set and cancel certain instruc-

tion conditions. These paired instructions must be in the same task.
Instruction Description Setting Canceling
condition instruction instruction

Interlocked An interlock turns OFF part of the program. Special conditions, such as | IL(002) ILC(003)

turning OFF output bits, resetting timers, and holding counters are in
effect.

BREAK(514) |Ends a FOR(512) - NEXT(513) loop during execution. (Prevents execu- | BREAK(514) | NEXT(513)

execution tion of all instructions until to the NEXT(513) instruction.)

Executes a IMPO(515) to JMEO(516) jump. JMPO(515) JMEO(516)

Block program | Executes a program block from BPRG(096) to BEND(801). BPRG(096) BEND(801)

execution

Flags

In this context, a flag is a bit that serves as an interface between instructions.

Input flags

Output flags

« Differentiation Flags
Differentiation result flags. The status of these
flags are input automatically to the instruction for
all differentiated up/down output instructions and
the DIFU(013)/DIFD(014) instructions.

e Carry (CY) Flag
The Carry Flag is used as an unspecified operand
in data shift instructions and addition/subtraction
instructions.

» Flags for Special Instructions
These include teaching flags for FPD(269) instruc-
tions and network communications enabled flags

« Differentiation Flags
Differentiation result flags. The status of these flags are output
automatically from the instruction for all differentiated up/down
output instructions and the UP(521)/DOWN(522) instruction.

« Condition Flags
Condition Flags include the Always ON/OFF Flags, as well as
flags that are updated by results of instruction execution. In user
programs, these flags can be specified by labels, such as ER,
CY, >, =, Al, A0, rather than by addresses.

« Flags for Special Instructions
These include memory card instruction flags and MSG(046)
execution completed flags.

Operands

Operands specify preset instruction parameters (boxes in ladder diagrams)
that are used to specify /O memory area contents or constants. An instruction
can be executed entering an address or constant as the operands. Operands
are classified as source, destination, or number operands.

Example
— MOV] JMP
#0000 ‘_ S (source) &3 {— N (number)
D00000 ﬂ-— D (destination)
Operand types Operand Description
symbol
Source Specifies the address of the data | S Source Oper- | Source operand other than control
to be read or a constant. and data (C)

C Control data Compound data in a source oper-
and that has different meanings
depending bit status.

Destination Specifies the address where data | D (R)
(Results) will be written.
Number Specifies a particular number used | N
in the instruction, such as a jump
number or subroutine number.

22

Basic Concepts

Section 2-1

2-1-3

Note Operands are also called the first operand, second operand, and so on, start-
ing from the top of the instruction.

— MOV

#0000

{— First operand

D00000 H

Instruction Location and Execution Conditions

Second operand

The following table shows the possible locations for instructions. Instructions
are grouped into those that do and those do not require execution conditions.
See SECTION 3 Instruction Functions Instructions for details on individual
instructions.

Instruction type

Possible location

Execution
condition

Diagram

Examples

Input instructions

Logical start (Load
instructions)

Connected directly
to the left bus bar

or is at the begin-

ning of an instruc-
tion block.

Not required.

LD, LD TST(350),
LD > (and other
symbol compari-
son instructions)

Intermediate
instructions

Between a logical
start and the out-
put instruction.

Required.

AND, OR, AND
TEST(350), AND
> (and other ADD
symbol compari-
son instructions),
UP(521),
DOWN(522),
NOT(520), etc.

Output instructions

Connected directly
to the right bus
bar.

Required.

Most instructions
including OUT and
MOV(021).

Not required.

END(001),
JME(005),
FOR(512),
ILC(003), etc.

Note 1.

There is another group of instruction that executes a series of mnemonic
instructions based on a single input. These are called block programming
instructions. Refer to the CS/CJ Series CPU Units Instruction Reference
Manual for details on these block programs.

If an instruction requiring an execution condition is connected directly to
the left bus bar without a logical start instruction, a program error will occur
when checking the program on a Programming Device (CX-Programmer
or Programming Console).

23

Basic Concepts Section 2-1

2-1-4 Addressing I/O Memory Areas
Bit Addresses

0000 00

I Bit number (00 to 15)

Indicates the word address

Example: The address of bit 03 in word 0001 in the CIO Area would be as
shown below. This address is given as “CIO 000103” in this manual.

0001 03

Bit number (03)
— Word address: 0001

Bit: CIO 000103
Word

15 14 13 12 11 10 09 08 07 06 05 04 |03 02 01 00

0000
0001
0002

Word Addresses

oooo

Indicates the word address

Example: The address of bits 00 to 15 in word 0010 in the CIO Area would be
as shown below. This address is given as “CIO 0010” in this manual.

0010

— Word address

DM and EM Areas addresses are given with “D” or “E” prefixes, as shown
below for the address D00200.

D00200

— Word address

24

Basic Concepts

Section 2-1

Example: The address of word 2000 in the current bank of the Extended Data
Memory would be as follows:

E00200

be as follows:

— Word address
The address of word 2000 in the bank 1 of the Extended Data Memory would

E1_00200

L

2-1-5 Specifying Operands

—[Word address

Bank number

Operand Description Notation Application
examples
Specifying bit | The word and bit numbers are specified di 0001 02 0001
addresses rectly to specify a bit (input input bits). 02
SEEE QDL Bit number (02) =
Bit number .
(00 to 15) Word number: 0001
Indicates the word address.
Note The same addresses are used to access
timer/counter Completion Flags and
Present Values. There is also only one
address for a Task Flag.
Specifying The word number is specified directly to speci- 0003 MOV 0003
word fy the 16-bit word. D00200
addresses Word number: 0003
oood
D00200

Indicates the word address.

Word number: 00200

25

Basic Concepts Section 2-1
Operand Description Notation Application
examples
Specifying The offset from the beginning of the area is
indirect DM/ |specified. The contents of the address will be
EM addresses |treated as binary data (00000 to 32767) to
in Binary specify the word address in Data Memory (DM)
Mode or Extended Data Memory (EM). Add the @
symbol at the front to specify an indirect ad-
dress in Binary Mode.
@D00
Contents |:| 00000 to 32767
(0000 Hex to
7FFF Hex in BIN)
D

1) DO0000O0 to D32767 are specified if @D00300 MOV #0001
@D(LICC) contains 0000 Hex to 7FFF @00300
Hex (00000 to 32767). Contents

Binary: 256
!
Specifies D00256.
Add the @ symbol.

2) EO _00000 to EO _32767 of bank O in @D00300
Extended Data Memory (EM) are specified
if @D(UJJJOO) contains 8000 Hex to Contents
FFFF Hex (32768 to 65535) Binary: 32769

!
Specifies EO 00001.

3) ELJ_00000 to EL]_32767 in the specified |@E1 00200 MOV #0001
bank are specified if @E[]_[IICICIC] con- ~ @E1_00200
tains 0000 Hex to 7FFF Hex (00000 to Contents
32767). Bin:itry: 257

Specifies E1_00257.

4) E([J+1)_00000 to E([1+1) 32767 in the @E1 00200
bank following the specified bank [] are —
specified if @EL]_JOOOO contains Contents
8000 Hex to FFFF Hex (32768 to 65535). Binary: 32770

'
Specifies E2_00002.

Note When specifying an indirect address in Binary Mode, treat Data Memory (DM) and Extended Data
Memory (EM) (banks 0 to C) as one series of addresses. If the contents of an address with the @
symbol exceeds 32767, the address will be assumed to be an address in the Extended Data Mem-
ory (EM) continuing on from 00000 in bank No. 0.

Example: If the Data Memory (DM) word contains 32768, E1_00000 in bank 0 in Extended Data Mem-
ory (EM) would be specified.
Note If the Extended Data Memory (EM) bank number is specified as “n” and the contents of the word
exceeds 32767, the address will be assumed to be an address in the Extended Data Memory (EM)
continuing on from 00000 in bank N+1.

Example: If bank 2 in Extended Data Memory (EM) contains 32768, E3_00000 in bank number 3 in
Extended Data Memory (EM) would be specified.

26

Basic Concepts Section 2-1
Operand Description Notation Application
examples
_Sp_ecifying The offset from the beginning of the area is *D00200 LVIOV #0001
Indlredccti DM/ |specified. The contents of the address will be D00200
EM addresses |treated as BCD data (0000 to 9999)to specify 1 Contents
in BCD Mode |the word address in Data Memory (DM) or Ex-
tended Data Memory (EM). Add an asterisk (*)
at the front to specify an indirect address in
BCD Mode. Specifies D0100
DOCICIEC Add an asterisk ().
—
825 0>
0
Operand Description Notation Application examples
Specifying a | An index register (IR) or a data register (DR) is speci- | IRO MOVR 000102 IRO
register fied directly by specifying IRL] (LI: 0 to 15) or DRL] Stores the PLC memory address for
directly ((J: 0 to 15). CIlO 0010 in IRO.
IR1 MOVR 0010 IR1
Stores the PLC memory address for
CIO 0010 in IR1.
Specifying Indirect The bit or word with the PLC memory ,IRO LD ,IRO
an indirect | address address contained in IR[C] will be speci- Loads the bit with the PLC memory
address (No offset) |fied. address in IRO.
using a reg- Specify ,IRC] to specify bits and words MOV #0001 ,IR1
Ister for instruction operands. JIR1 Stores #0001 in the word with the PLC
memory in IR1.
Constant | The bit or word with the PLC memory +5,IR0 LD +5,IR0
offset address in IR[] + or — the constant is Loads the bit with the PLC memory
specified. address in IR0 + 5.
Specify +/— constant ,IR[]. Constant off- MQV #0001 +31 ,IR1
sets range from —2048 to +2047 (deci- +31,IR1 Stores #0001 in the word with the PLC
mal). The offset is converted to binary memory address in IR1 + 31
data when the instruction is executed.
DR offset | The bit or word with the PLC memory DRO,IRO |LD DRO,IRO
address in IRL] + the contents of DRL] is Loads the bit with the PLC memory
specified. address in IR0 + the value in DRO.
Specify DRI ,IRL]. DR (data register) MOV #0001 DRO ,IR1
contents are treated as signed-binary Stores #0001 in the word with the PLC
data. The contents of IRC] will be given a DRO,IR1 memory address in IR1 + the value in
negative offset if the signed binary value DRO.
is negative.
Auto Incre- | The contents of IRL] is incremented by |,IRO ++ LD ,IRO ++
ment +1 or +2 after referencing the value as Increments the contents of IR0 by 2
an PLC memory address. after the bit with the PLC memory
+1: Specify ,IRC+ address in IR0 is loaded.
+2: Specify ,IRL] + + MOV #0001 ,IR1 +
JIR1 + Increments the contents of IR1 by 1
after #0001 is stored in the word with
the PLC memory address in IR1.
Auto Dec- | The contents of IR[] is decremented by |,——IRO LD ,—-IRO
rement —1 or -2 after referencing the value as After decrementing the contents of IRO
an PLC memory address. by 2, the bit with the PLC memory
—1: Specify ,—IR[] address in IR0 is loaded.
—2: Specify ,— —IR[] R1 MOV #0001 ,—IR1

After decrementing the contents of IR1
by 1, #0001 is stored in the word with
the PLC memory address in IR1.

27

Basic Concepts

Section 2-1

Data Operand Data form Symbol Range Application example
16-bit con- | All binary data or | Unsigned binary |# #0000 to #FFFF | ---
stant alimited range of [gjgned decimal |+ —-32768 to
binary data +32767
Unsigned deci- | & (See Note.) &0 to &65535
mal
AllBCD dataora |BCD # #0000 to #9999 | ---
limited range of
BCD data
32-bit con- | All binary data or | Unsigned binary |# #00000000 to
stant a_limited range of #FFFFFFFF
binary data Signed binary + —21474836481t0 | ---
+2147483647
Unsigned deci- | & (See Note.) &0 to
mal &429467295
AllBCD dataora |BCD # #00000000 to
limited range of #99999999
BCD data
Text string Description Symbol Examples
Text string data is stored in ASCII '"ABCDE' MOV$ D00100 D00200
(one byte except for special charac-
ters) in order from the leftmost to the A B D00100 41 42
rightmost byte and from the right- 'C D D00101 43 44
most (smallest) to the leftmost word. = NUL D00102 45 00
00 Hex (NUL code) is stored in the " |
rightmost byte of the last word if 71 a5
: D00200 41 42
tgtresre is an odd number of charac- 23 24 D00201 23 14
’ ' . 45 00 D00202 45 00
0000 Hex (2 NUL codes) is stored in
the leftmost and rightmost vacant
bytes of the last word + 1 if there is '‘ABCD'
an even number of characters.
IAI I3I
ICI IDI
NUL| NUL
I
41 42
43 44
00 00

ASCII characters that can be used in a text string includes alphanumeric characters, Katakana and sym-

bols (except for special characters). The characters are shown in the following table.

28

Note Unsigned decimal notation if used for the CX-Programmer only.

Basic Concepts Section 2-1

ASCII Characters

Bits 0to 3 Bits4to 7
Binary 0000|0001 | 0010 |0011{0100|0101(0110|0111|1000|1001|{1010|1011|2200|1101|1110|1111
Hex 0 1 2 3 5 6 7 8 9 A B C D E F

Space |¥i (@b | | &

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

| o

2l

Timlo|lolm|>|lo|o|N|lo|la|blw|N|R|O

29

Basic Concepts

Section 2-1

2-1-6 Data Formats

The following table shows the data formats that the CS/CJ Series can handle.

Data type Data format Decimal 4-digit
hexadecimal
Unsigned 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o (0t 0000 to FFFF
binary ‘ ‘ ‘ ‘ ‘ ‘ ‘ 65535
Binary . 915 2914 513 912, 511 510 09 98,97 96 o5 o4, o3 292 o1 90,
Decimal 3276816384 819240922048 1024 512 256 '128 64 12 16 8 4 2 1
Hex 028 22 21 20 23 22 o1 2023 22 pf 20 23 22 i 20
Signed 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o |-32768t0 800010 7FFF
binary ‘ ‘ ‘ ‘ ‘ ‘ ‘ +32767
Binary) 215 214 213 212‘ 211 210 29 28‘27 26 25 24 23 22 21 20‘
Decimal 3276816384 819240922048 1024 512 256 128 64 12 16 8 4 2 1
Hex ;28 22 21 200 23 22 ol 9093 22 o1 200 93 22 o1 20
L Sign bit: 0: Positive, 1: Negative
BCD 15 14 13 12 11 10 9 8 7 6 5 4 2 1 o |0t09999 0000 to 9999
(binary
coded dec- ‘ ‘ ‘ ‘ ‘ ‘ ‘
imal) Binary 23 22 21 20 23 22 21 2023 22 1 20 23 22 o1 20
Decimal
0to9 Oto9 Oto9 Oto9

30

Basic Concepts Section 2-1

Data type Data format Decimal 4-digit
hexadecimal
Single-pre- 31 30 29 23 22 21 20 19 18 17 3 2 1 0
cision
foatng- HERIREEREEER RN
point deci- —
mal Sign of Exponent Mantissa
mantissa Binary
K—J%

Value = (-1)59"x 1.[Mantissa] x 2Exponent
Sign (bit 31) 1: negative or 0: positive

Mantissa The 23 bits from bit 00 to bit 22 contain the mantissa,
i.e., the portion below the decimal point in 1.CICIC1.....,
in binary.

Exponent The 8 bits from bit 23 to bit 30 contain the exponent.
Thenexponent is expressed in binary as 127 plus n
in 2",

Note This format conforms to IEEE754 standards for single-precision floating-point
data and is used only with instructions that convert or calculate floating-point
data. It can be used to set or monitor from the /O memory Edit and Monitor
Screen on the CX-Programmer (not supported by the Programming Consoles).
As such, users do not need to know this format although they do need to know
that the formatting takes up two words.

Double- 63 62 61 52 51 50 49 48 47 46 3 2 1 0
foaung || L0 LD
floating-
point deci- —
mal Sign of Exponent Mantissa
mantissa Binary
—

Value = (-1)59"x 1.[Mantissa] x 25xponent
Sign (bit 63) 1: negative or 0: positive

Mantissa The 52 bits from bit 00 to bit 51 contain the mantissa,
i.e., the portion below the decimal point in 1.L1CIC].....,
in binary.

Exponent The 11 bits from bit 52 to bit 62 contain the exponent
Thenexponent is expressed in binary as 1023 plus n
in 2",

Note This format conforms to IEEE754 standards for double-precision floating-point
data and is used only with instructions that convert or calculate floating-point
data. It can be used to set or monitor from the 1/O memory Edit and Monitor
Screen on the CX-Programmer (not supported by the Programming Consoles).
As such, users do not need to know this format although they do need to know
that the formatting takes up four words.

Signed Binary Data
In signed binary data, the leftmost bit indicates the sign of binary 16-bit data.
The value is expressed in 4-digit hexadecimal.

Positive Numbers: A value is positive or 0 if the leftmost bit is 0 (OFF). In 4-
digit hexadecimal, this is expressed as 0000 to 7FFF Hex.

Negative Numbers: A value is negative if the leftmost bit is 1 (ON). In 4-digit
hexadecimal, this is expressed as 8000 to FFFF Hex. The absolute of the
negative value (decimal) is expressed as a two’s complement.

Example: To treat —19 in decimal as signed binary, 0013 Hex (the absolute

value of 19) is subtracted from FFFF Hex and then 0001 Hex is added to yield
FFED Hex.

31

Basic Concepts Section 2-1
F F F F
1111 1111 1111 1111
True number 0 0 1 3
_) 0000 0000 0001 0011
F F E C
1111 1111 1110 1100
0 0 0 1
+) 0000 0000 0000 0001
Two's complement F F E D
1111 1111 1110 1101

32

Complements

Generally the complement of base x refers to a number produced when all
digits of a given number are subtracted from x — 1 and then 1 is added to the
rightmost digit. (Example: The ten’s complement of 7556 is 9999 — 7556 + 1 =
2444.) A complement is used to express a subtraction and other functions as
an addition.

Example: With 8954 — 7556 = 1398, 8954 + (the ten’s complement of 7556) =
8954 + 2444 = 11398. If we ignore the leftmost bit, we get a subtraction result
of 1398.

Two’s Complements

A two’s complement is a base-two complement. Here, we subtract all digits
from 1 (2 -1 =1) and add one.

Example: The two’'s complement of binary number 1101 is 1111 (F Hex) —
1101 (D Hex) + 1 (1 Hex) = 0011 (3 Hex). The following shows this value
expressed in 4-digit hexadecimal.

The two’s complement b Hex of a Hex is FFFF Hex — a Hex + 0001 Hex =
b Hex. To determine the two's complement b Hex of “a Hex,” use b Hex =
10000 Hex — a Hex.

Example: to determine the two’s complement of 3039 Hex, use 10000 Hex —
3039 Hex = CFC7 Hex.

Similarly use a Hex = 10000 Hex — b Hex to determine the value a Hex from
the two’s complement b Hex.

Example: To determine the real value from the two’s complement CFC7 Hex
use 10000 Hex — CFC7 Hex = 3039 Hex.

The CS/CJ Series has two instructions: NEG(160)(2'S COMPLEMENT) and
NEGL(161) (DOUBLE 2'S COMPLEMENT) that can be used to determine the
two’s complement from the true number or to determine the true number from
the two’s complement.

Signed BCD Data

Signed BCD data is a special data format that is used to express negative
numbers in BCD. Although this format is found in applications, it is not strictly
defined and depends on the specific application. The CS/CJ Series supports
the following instructions to convert the data formats: SIGNED BCD-TO-
BINARY: BINS(470), DOUBLE SIGNED BCD-TO-BINARY: BISL(472),

Basic Concepts Section 2-1

SIGNED BINARY-TO-BCD: BCDS(471), and DOUBLE SIGNED BINARY-TO-
BCD: BDSL(473). Refer to the CS/CJ-series Programmable Controllers Pro-
gramming Manual (W340) for more information.

Decimal Hexadecimal Binary BCD
0 0 0000 0000
1 1 0001 0001
2 2 0010 0010
3 3 0011 0011
4 4 0100 0100
5 5 0101 0101
6 6 0110 0110
7 7 0111 0111
8 8 1000 1000
9 9 1001 1001
10 A 1010 0001 0000
11 B 1011 0001 0001
12 C 1100 0001 0010
13 D 1101 0001 0011
14 E 1110 0001 0100
15 F 1111 0001 0101
16 10 10000 0001 0110
Decimal Unsigned binary (4-digit Signed binary (4-digit
hexadecimal) hexadecimal)
+65,535 FFFF Cannot be expressed.
+65534 FFFE
+32,769 8001
+32,768 8000
+32,767 7FFF TFFF
+32,766 7FFE 7FFE
+2 0002 0002
+1 0001 0001
0 0000 0000
-1 Cannot be expressed. FFFF
-2 FFFE
-32,767 8001
-32,768 8000

33

Basic Concepts Section 2-1

2-1-7 Instruction Variations

The following variations are available for instructions to differentiate executing
conditions and to refresh data when the instruction is executed (immediate

refresh).
Variation Symbol Description

Differentiation ON |@ Instruction that differentiates when the execu-
tion condition turns ON.

OFF | % Instruction that differentiates when the execu-
tion condition turns OFF.

Immediate refreshing ! Refreshes data in the 1/0O area specified by
the operands or the Special I/0O Unit words
when the instruction is executed.

(Immediate refreshing is not supported by the
CS1D CPU Units.)

@ MoV
—I; Instruction (mnemonic)
Differentiation variation

1
‘ Immediate refresh variation

2-1-8 Execution Conditions
The CS/CJ Series offers the following types of basic and special instructions.
» Non-differentiated instructions executed every cycle
« Differentiated instructions executed only once

Non-differentiated Instructions
Output instructions that required execution conditions are executed once

every cycle while the execution condition is valid (ON or OFF).

Example
- - }——l MOV
I Non-differentiated
output instruction

Input instructions that create logical starts and intermediate instructions read
bit status, make comparisons, test bits, or perform other types of processing
every cycle. If the results are ON, power flow is output (i.e., the execution con-
dition is turned ON).

Example
Non-differentiated input instruction

} I—__

Basic Concepts Section 2-1

Input-differentiated Instructions

Upwardly Differentiated Instructions (Instruction Preceded by @)
» Output Instructions: The instruction is executed only during the cycle in
which the execution condition turned ON (OFF - ON) and are not exe-
cuted in the following cycles.

Example ggo1
(@)u dly-diff 02
| pwardly-differ
entiated instruction }'———f @MoVv

Executes the MOV instruction once when
CIO 000102 goes OFF - ON.

e Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an ON execution
condition (power flow) when results switch from OFF to ON. The execu-
tion condition will turn OFF the next cycle.

Example 0001
Upwardly differentiated input instruction

i b —

ON execution condition created for one
cycle only when CIO 000103 goes from
OFF to ON.

* Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an OFF execution
condition (power flow stops) when results switch from OFF to ON. The
execution condition will turn ON the next cycle.

Example 0001
Upwardly differentiated input instruction 03

OFF execution condition created for one
cycle only when CIO 00103 goes from
OFF to ON.

Downwardly Differentiated Instructions (Instruction preceded by %)
» Output instructions: The instruction is executed only during the cycle in
which the execution condition turned OFF (ON - OFF) and is not exe-
cuted in the following cycles.

0001
Example 02

(%) Downwardly dif- o
l ferentiated instruction l"‘_‘—{ %6SET]—

Executes the SET instruction once
when CIO 000102 goes ON to OFF.

35

Basic Concepts Section 2-1

e Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output the execution condi-
tion (power flow) when results switch from ON to OFF. The execution con-
dition will turn OFF the next cycle.

Example
‘ Downwardly differentiated instruction 8201

— —

Will turn ON when the CIO 000103 switches from
ON - OFF and will turn OFF after one cycle.

Note Unlike the upwardly differentiated instructions, downward differentia-
tion variation (%) can only be added to LD, AND, OR, SET and RSET
instructions. To execute downward differentiation with other instruc-
tions, combine the instructions with a DIFD or a DOWN instruction.
NOT can be added to instructions only when using a CS1-H/CJ1-H/
CJ1M CPU Unit.

e Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an OFF execution
condition (power flow stops) when results switch from ON to OFF. The
execution condition will turn ON the next cycle.

Example 0001

Downwardly differentiated input instruction 03

OFF execution condition created for one
cycle only when CIO 00103 goes from
ON to OFF.

36

Basic Concepts Section 2-1

2-1-9 1/O Instruction Timing

The following timing chart shows different operating timing for individual
instructions using a program comprised of only LD and OUT instructions.

o i |
A B | f
{ | O 8 l |
A B2 | !
{11 0 = |t
A B3 |
111 83
141 0) %
A B4 '
4
i o & %
A B5 .
{11} o B %
A B6 !
{14 O B6 !
i
A B7 ;
1 1 87 '
[@ %
A B8 K
i1} o * |
. iy B9 '
14 0) [
A BIO gy ° '
{1 0] ' . ;
A B11 , .
| t— 0 BN | | E
A B12 812 . ‘ !
o 0] . ; : ;
CPU pro- : H . z ' [T
cessing E 1 ? | — 3] I n i g i

Instruction 1/O refresh
executed.

Differentiated Instructions

« A differentiated instruction has an internal flag that tells whether the previ-
ous value is ON or OFF. At the start of operation, the previous value flags
for upwardly differentiated instruction (DIFU and @ instructions) are set to
ON and the previous value flags for downwardly differentiated instructions
(DIFD and % instructions) are set to OFF. This prevents differentiation
outputs from being output unexpectedly at the start of operation.

» An upwardly differentiated instruction (DIFU or @ instruction) will output
ON only when the execution condition is ON and flag for the previous
value is OFF.

37

Basic Concepts Section 2-1

e Use in Interlocks (IL - ILC Instructions)
In the following example, the previous value flag for the differentiated
instruction maintains the previous interlocked value and will not output a
differentiated output at point A because the value will not be updated
while the interlock is in effect.

0880
(002)
il { L]
08(1)0
(013)
il { DIFU 001000 J
(003)
L ILc]
ILis ILis
executing executing

001000

®

e Use in Jumps (JMP - JME Instructions): Just as for interlocks, the pre-
vious value flag for a differentiated instruction is not changed when the
instruction is jumped, i.e., the previous value is maintained. Upwardly and
downwardly differentiate instructions will output the execution condition
only when the input status has changed from the status indicated by the
previous value flag.

Note a) Do not use the Always ON Flag or A20011 (First Cycle Flag) as
the input bit for an upwardly differentiated instruction. The instruc-
tion will never be executed.

b) Do not use Always OFF Flag as the input bit for a downwardly dif-
ferentiated instruction. The instruction will never be executed.

38

Basic Concepts

Section 2-1

2-1-10 Refresh Timing

Cyclic Refresh

Immediate Refresh

Note

Instructions with Refresh

Variation (1)

The following methods are used to refresh external 1/O.
* Cyclic refresh
* Immediate refresh (! specified instruction, IORF instruction)

Refer to the section on CPU Unit operation in the CS/CJ Series Operation
Manual for details on the 1/O refresh.

Every program allocated to a ready cyclic task or a task where interrupt condi-
tion has been met will execute starting from the beginning program address
and will run until the END(001) instruction. After all ready cyclic tasks or tasks
where interrupt condition have been met have executed, cyclic refresh will
refresh all I/O points at the same time.

Programs can be executed in multiple tasks. 1/O will be refreshed after the
final END(001) instruction in the program allocated to the highest number
(among all ready cyclic tasks) and will not be refreshed after the END(001)
instruction in programs allocated to other cyclic tasks.

Top
} 15 0
' LD 000101 CIO 0001 :I 16-bit units
15 0
1 OUT 000209 cooooz []
To_p 15 0
| ciooo0s [i bit units
MOV 0003 15 0
cioooos [
END
Cyclic refresh
(batch processing) | | | |
I/O refresh — All real data

Execute an IORF instruction for all required words prior to the END(001)
instruction if 1/0O refreshing is required in other tasks.

I/O will be refreshed as shown below when an instruction is executing if an
real I/O bit is specified as an operand.

Units Refreshed data

C200H Basic I/0 Units (CS Series only) | 1/O will be refreshed for the 16 bits con-

taining the bit.

CJ Basic I/O Units

39

Basic Concepts Section 2-1

» When a word operand is specified for an instruction, 1/0 will be refreshed
for the 16 bits that are specified.

« Inputs will be refreshed for input or source operand just before an instruc-
tion is executed.

 Outputs will be refreshed for outputs or destination (D) operands just after
an instruction is execute.

Add an exclamation mark (!) (immediate refresh option) in front of the instruc-
tion.

Note Immediate refreshing is not supported by the CS1D CPU Units, but they do
support refreshing for IORF(097) and DLNK(226) instructions.

Units Refreshed for /O REFRESH Instruction

Location CPU or Expansion 1/0 Rack (but not SYSMAC BUS Slave Racks)
Units Basic I/O Units | CS/CJ-series Basic 1/0 Refreshed
Units
C200H Basic I/0 Unit (See | Refreshed
note.)
C200H Group-2 High-den- | Not refreshed
sity 1/0 Units (See note.)

Special I/O Units Not refreshed

Note C200H I/O Units cannot be mounted to CJ-series PLCs.

Top
. Immediate refresh
. 15 0
. Input
I'D 000101 cioooor []
) 16-bit units
. 15 0
10U 000209 Output I—
: CIO 0002
END
W —
T?p I/O refresh
. 15 0
) S
IMOV 0003 CIO 0003 |:|
: 0004 16-bit units
) 15 0
=P 0]
CIO 0004
l Cyclic refresh
(batch processing)
1/0O refresh All real I/O

40

Basic Concepts

Section 2-1

Units Refreshed for
IORF(097) or DLNK(226)

An /0 REFRESH (IORF(097)) instruction that refreshes real I/O data in a
specified word range is available as a special instruction. All or just a specified
range of real /0 data can be refreshed during a cycle with this instruction.
IORF can also be used to refresh words allocated to Special I/O Units.
Another instruction, CPU BUS UNIT REFRESH (DLNK(226)) is available to
refresh the words allocated to CPU Bus Units in the CIO and DM Areas, as
well as to perform special refreshing for the Unit, such as refreshing data
links. DLNK(226) is supported only by CS1-H, CJ1-H, CJ1M, or CS1D CPU

Units.

Units Refreshed for IORF(097)

Location CPU or Expansion 1/0O Rack (but not SYSMAC BUS Slave Racks)
Units Basic I/0 Units | CS/CJ-series Basic I/0 Units | Refreshed
C200H Basic I/0 Units Refreshed
C200H Group-2 High-den- Refreshed
sity 1/0 Units
Special I/O Units Refreshed

CPU Bus Units

Not refreshed

Units Refreshed for DLNK(226)

——
i
i
i

A

Location

CPU or Expansion I/0 Rack (but not SYSMAC BUS Slave Racks)

Units

Basic I/O Units

Not refreshed

Special I/O Units

Not refreshed

CPU Bus Units

Words allocated to the Unit in CIO Area
Words allocated to the Unit in DM Area

Special refreshing for the Unit (data links for
Controller Link Units and SYSMAC Link Units
or remote /O for DeviceNet Units)

Refreshed

Words allocated in
CIO Area and DM
Area and any

special refreshing

DLNK
#F

e

CPU Bus Unit with

unit number F.

—

41

Basic Concepts Section 2-1

2-1-11 Program Capacity

The maximum program capacities of the CS/CJ-series CPU Units for all user
programs (i.e., the total capacity of all tasks) are given in the following table.
All capacities are given as the maximum number of steps. The capacities
must not be exceeded, and writing the program will be disabled if an attempt
is made to exceed the capacity.

Each instruction is from 1 to 7 steps long. Refer to 10-5 Instruction Execution
Times and Number of Steps in the Operation Manual for the specific number
of steps in each instruction. (The length of each instruction will increase by 1
step if a double-length operand is used.)

Series CPU Unit Max. program capacity I/O points
CS Series |CS1H-CPU67H/CPU67-E 250K steps 5,120
CS1D-CPU67H 250K steps

CS1H-CPU66H/CPU6G6-E 120K steps
CS1H-CPUB5H/CPUBS-E 60K steps
CS1D-CPU65H 60K steps
CS1H-CPU64H/CPU64-E 30K steps
CS1H-CPU63H/CPUG3-E 20K steps
CS1G-CPU45H/CPU45-E 60K steps

CS1G-CPU44H/CPU44-E 30K steps 1,280
CS1G-CPU43H/CPU43-E | 20K steps 960
CS1G-CPU42H/CPU42-E 10K steps

CJ Series | CJ1H-CPU66H 120K steps 2,560
CJ1H-CPUG5H 60K steps
CJ1G-CPU45H/CPU45 60K steps 1280
CJ1G-CPU44H/CPU44 30K steps
CJ1G-CPU43H 20K steps 960
CJ1G-CPU42H 10K steps
CJ1M-CPU23/CPU13 20K steps 640
CJ1IM-CPU22/CPU12 10K steps 320

Note Memory capacity for CS/CJ-series PLCs is measured in steps, whereas
memory capacity for previous OMRON PLCs, such as the C200HX/HG/HE
and CV-series PLCs, was measured in words. Refer to the information at the
end of10-5 Instruction Execution Times and Number of Steps in the Operation
Manual for your PLC for guidelines on converting program capacities from
previous OMRON PLCs.

2-1-12 Basic Ladder Programming Concepts

Instructions are executed in the order listed in memory (mnemonic order). The
basic programming concepts as well as the execution order must be correct.

42

Basic Concepts

Section 2-1

General Structure of the
Ladder Diagram

Input bit

Left bus bar —,

A ladder diagram consists of left and right bus bars, connecting lines, input
bits, output bits, and special instructions. A program consists of one or more
program runs. A program rung is a unit that can be partitioned when the bus is
split horizontally. In mnemonic form, a rung is all instructions from a LD/LD
NOT instruction to the output instruction just before the next LD/LD NOT
instructions. A program rung consists of instruction blocks that begin with an
LD/LD NOT instruction indicating a logical start.

Special
.. _instruction
Connecting line \

Output bit

/

& Right bus bar

L

O__

\d
4— Rungs

I |

H —H—

/

Instruction blocks

m e

____._O_.

- —HF

— = -0

Mnemonics

A mnemonic program is a series of ladder diagram instructions given in their
mnemonic form. It has program addresses, and one program address is
equivalent to one instruction. Program addresses contain six digits starting

from 000000.

Example
0000 0000 0000 0000 0002
00 01 02 03
1 - O—

0001 0001
00 0

END

Program Address Instruction (Mnemonic) Operand
000000 LD 000000
000001 AND 000001
000002 LD 000002
000003 AND NOT 000003
000004 LD NOT 000100
000005 AND 000101
000006 OR LD
000007 AND LD
000008 ouT 000200
000009 END

43

Basic Concepts

Section 2-1

Basic Ladder Program Concepts
1.

1,23..

When ladder diagrams are executed by PLCs, the signal flow (power flow)
is always from left to right. Programming that requires power flow from right
to left cannot be used. Thus, flow is different from when circuits are made
up of hard-wired control relays. For example, when the circuit “a” is imple-
mented in a PLC program, power flows as though the diodes in brackets
were inserted and coil R2 cannot be driven with contact D included. The
actual order of execution is indicated on the right with mnemonics. To
achieve operation without these imaginary diodes, the circuit must be re-
written. Also, circuit “b” power flow cannot be programmed directly and
must be rewritten.

Circuit "a"

A (1) signal flow 56 Order of execution (mnemonic)

|| () () || @(7) ()LD A (6) AND B
c@ @) pW Pt @)LD C (7)OUT RL

[l | (3) OUT TRO (8) LD TRO
ey) (4)AND D (9) AND E
IEI(Q) (5)OR LD (10) OUT R2
[

R

Circuit " b"

A B
|
[

®

le
To

0

®

In circuit “a,” coil R2 cannot be driven with contact D included.

In circuit “b,” contact E included cannot be written in a ladder diagram. The
program must be rewritten.

There is no limit to the number of 1/O bits, work bits, timers, and other input
bits that can be used. Rungs, however, should be kept as clear and simple
as possible even if it means using more input bits to make them easier to
understand and maintain.

There is no limit to the number of input bits that can be connected in series
or in parallel in series or parallel rungs.

4. Two or more output bits can be connected in parallel.

0000 0000
0 05

{ TIm 0000 #0100 J}—

-4 o

0002
00

)
J

Basic Concepts

Section 2-1

Restrictions

1,2,3...

5. Output bits can also be used as input bits.

-

0002
00

@)

1. Aladder program must be closed so that signals (power flow) will flow from
the left bus bar to the right bus bar. A rung error will occur if the program is
not closed (but the program can be executed).

N/
/

e

O
J

2. Output bits, timers, counters and other output instructions cannot be con-
nected directly to the left bus bar. If one is connected directly to the left bus
bar, a rung error will occur during the programming check by a Program-
ming Device. (The program can be executed, but the OUT and MOV(021)

will not be executed.)

vided.
)

/ Input condition must be pro

J

X
X

MOV

Insert an unused N.C. work bit or the ON Condition Flag (Always ON Flag) if

the input must be kept ON at all times.

Unused work bit

P4
Al

@)

ON (Always ON Flag)
]L
1

MOV

45

Basic Concepts

Section 2-1

46

3. An input bit must always be inserted before and never after an output in-
struction like an output bit. If it is inserted after an output instruction, then
a location error will occur during a Programming Device program check.

0000 0000 0002 : 0000
00 03 01) 04
Il Il O "
|1 1 Y (N

0000 0002
01)1
Il ‘
|1

4. The same output bit cannot be programmed in an output instruction more
than once. Instructions in a ladder program are executed in order from the
top rung in a single cycle, so the result of output instruction in the lower
rungs will be ultimately reflected in the output bit and the results of any pre-

vious instructions controlling the same bit will be overwritten and not out-
put.

(Output bit)
0000
00
] L)
11 \9
(Output bit)
0000
00

]l)
LA A

5. An input bit cannot be used in an OUTPUT instruction (OUT).

0000
00

| (Input bit) |

11)
| LA A |

6. An END(001) instruction must be inserted at the end of the program in
each task.

« If a program without an END(001) instruction starts running, a program
error indicating No End Instruction will occur, the ERR/ALM LED on the
front of the CPU Unit will light, and the program will not be executed.

« If a program has more than one END(001) instruction, then the program
will only run until the first END(001) instruction.

Basic Concepts Section 2-1

» Debugging programs will run much smoother if an END(001) instruction is
inserted at various break points between sequence rungs and the
END(001) instruction in the middle is deleted after the program is
checked.

Task (program)

Task (program)

Task (program)

Task (program)

[r—
000000
000000
000001 000001
Z END
END END] Will not be executed.

000000
000001 00000
: END
END ' Will not be executed.
END

Task (program)

Task (program)

000000 000000
000001 000001
END END

2-1-13 Inputting Mnemonics

A logical start is accomplished using an LD/LD NOT instruction. The area
from the logical start until the instruction just before the next LD/LD NOT
instruction is considered a single instruction block.

Create a single rung consisting of two instruction blocks using an AND LD
instruction to AND the blocks or by using an OR LD instruction to OR the
blocks. The following example shows a complex rung that will be used to
explain the procedure for inputting mnemonics (rung summary and order).

a7

Basic Concepts Section 2-1
1. First separate the rung into small blocks (a) to (f).
0000 0000 0000 0000 0000 0000 0005
00 01 02 03 04 05 00
— | {3 { I O—
0010 0010 0000
00 01 06
— |
0005
00
_| I—
(a) 0000 0000
00 01
-
(e) 0000 0000
04 05
(0) 010 0010 (60990 0000 —AF—
||| | A3 Q
) 0990
(1) —
© Ogl gls (4)
@)
()

48

Basic Concepts

Section 2-1

» Program the blocks from top to bottom and then from left to right.

(a) 0000 0000
02 03
-

AND 000002
AND NOT 000003

(a) 0000 0000 (b) 0010 0010]
00 01 00 01
A | | A)
LD 000000 LD 001000 I
AND 000001 AND 001001
ORLD
I
‘r)
0005
(c) 93
OR 000500

®3)

(c)0000 0000
04 05
-

LD 000004
AND 000005

f 0000
] o

6
—+

OR 000006

AND LD
\]O
0885
—O0
OUT 000500
Address | Instruction | Operand
@) 000200 | LD 000000
000201 | AND 000001)
(b) 000202 | LD 001000
000203 | AND 001001 (3)
000204 | ORLD (5)
(c) 000205 | OR 000500
d 000206 | AND 000002
000207 | AND NOT | 000003)
© 000208 | LD 000004
000209 | AND 000005 (4)
() 000210 | OR 000006
000211 | AND LD b
000212 | OUT 000500

49

Basic Concepts

Section 2-1

2-1-14 Program Examples
1,2,3... 1. Parallel/Series Rungs

0000 0000 0000 0000 0002
00 01 02 03 00
(o | o o e 23 O
0002

00

I_

a =—l—)

A block B block

Program the parallel instruction in the A block and then the B block.

2. Series/Parallel Rungs
0000 0000 0000 0000 0002
00 01 02 03 01

}—1 —H#i———o0

0002

o1

— ——

0000

04

—

q ——sle—— ph —of

A block B block

» Separate the rung into A and B blocks, and program each individually.

¢ Connect A and B blocks with an AND LD.

* Program A block.

| B1 block |

0000 oooo oooo oooo 0002
00 02
|__|| x O

oooo 0002

2
bl

2 ock

» Program B4 block and then program B, block.

Instruction |Operands
LD 000000
AND 000001 a
OR 000200
AND 000002
AND NOT | 000003 | (b
ouT 000200
Instruction [Operands
LD 000000
AND NOT 000001]a
LD 000002
AND 000003
OR 000201 b
OR 000004
AND LD
ouT 000201
Instruction |Operands
LD NOT 000000]
AND 000001 | J2
LD 000002
AND NOT 000003 b1
LD NOT 000004
AND 000202 | |P2
OR LD by + by
AND LD a-b
ouT 000202

e Connect B4 and B, blocks with an OR LD and then A and B blocks with an

AND LD.

50

Basic Concepts Section 2-1
3. Example of series connection in a series rung
Instruction |Operands
|A1 block || B1 block| LD 000000 | |,
OOOO 0000 OOOO 0000 0882 AND NOT 000001] 1
—I I—H'——l I—I I——O LD NOT 000002
oooo oooz 0002 0002 AND 000003 a
OR LD a; +a
LD 000004 | |,
|._ __I |._ __I AND 000005 | |+
A2 block B2 block LD 000006 b
__I AND 000007 | |2
A bIock B block ORLD by + bz
AND LD ab
ouT 000203
Program A, block, program A, block, and and then connect A; and A,
blocks with an OR LD.
Program B, and B, the same way.
Connect A block and B block with an AND LD.
Repeat for as many A to n blocks as are present.
0005
00
{1t { I e | e Rl { I O
{ I I HHI { I { I
fo—— a —_—— b — C —smmmmemme-a —— n —
A block B block C block n block

51

Basic Concepts Section 2-1
4. Complex Rungs
. o
0900 0000 0002 Instruction | Operand | |
—| : : : O LD 000000 08(2)0 0880
0000 0000 LD 000001
02 03 —
LD 000002
I I I_ Z N |
0000 0000 AND 000003 Z
_ﬁ_ﬁ_ ORLD The diagram above is based on the diagram below.
AND LD 0000
% %P) 000004 | °| °| IZI
| | e AND 000005
ORLD — A simpler program can be written by rewriting
LD 000006 this as shown below.
AND 000007 0820 0880 0880
ORLD - I 1 11 11
ouT 000204 00(')0 H H
01
—] —
|-— b —-| -
Block Instruction | Operand
0gg0 0000 0000 9002 LD 000000 |a
: “’ : : O LD NOT 000001 b
. s AND 000002 |
Block 0000 0000 ooooBIOCk D oeee0d c
99 9 00 AND NOT | 000004 |
T 1 1 LD 000005 |]
LD 000006 | J
|-— —-l 0000 0000 3
Blocck 06 07 AND NOT | 000007
—H— ORLD J°
. ANDLD | - d+e
- d .
Block OR LD (d+e)-c
. AND LD (d+e)-c+b
The above rung can be rewritten as follows: ouT 000205 |((d+e)-c+b)-a

\

0000 0000 0000 0002
00 01 02 05
1 1L 1L
I Al B o
0000 0000 0000 0000
00 03 04 05
1 1L 1L 11
I B Al LAl
0000 0000 0000 0000 0000
00 03 04 06 07
1 11 1L] I I F
I LAl Al I

52

Basic Concepts

Section 2-1

Reset input Instruction | Operand
9%88° o83° H00000 (L)% 88888(1)
I 1 1L O
: “ OR 000002
08(1)0 OR HO0000
— — |Error input M o001 #0100] 10 sec AND NOT | 000003
0000 0002 ouT H00000
02 T0001 06 TIM 0001
— f O 0100
Error display AND T0001
HO00000
ouT 000206
— —

If a holding bit is in use, the ON/OFF status would
be held in memory even if the power is turned OFF,

and the error signal would still be in effect when
power is turned back ON.

5. Rungs Requiring Caution or Rewriting

OR and OL LD Instructions

With an OR or OR NOT instruction, an OR is taken with the results of the lad-
der logic from the LD or LD NOT instruction to the OR or OR NOT instruction,
so the rungs can be rewritten so that the OR LD instruction is not required.

0000 0002 0000 0002 0002
00 07 01 o7 07
— | O = |} I} O
0000 0002 0000
01 07 00
= —

Example: An OR LD instruction will be needed if the rungs are programmed
as shown without modification. A few steps can be eliminated by rewriting the
rungs as shown.

Output Instruction Branches

A TR bit will be needed if there is a branch before an AND or AND NOT
instruction. The TR bit will not be needed if the branch comes at a point that is
connected directly to output instructions and the AND or AND NOT instruction
or the output instructions can be continued as is.

Output instruction 1

oo e o i oo
I]l I
I LAl | O
0002 0000 0002
09 01 08
]l
O\ LAl O

Output instruction 2

Example: A temporary storage bit TRO output instruction and load (LD)
instruction are needed at a branch point if the rungs are programmed without
modification. A few steps can be eliminated by rewriting the rungs.

53

Basic Concepts

Section 2-1

Mnemonic Execution Order

PLCs execute ladder programs in the order the mnemonics are entered so
instructions may not operate as expected, depending on the way rungs are
written. Always consider mnemonic execution order when writing ladder dia-
grams.

0000 0010 0000 0010 0002
00 00 00 00 10
I q > I LL

I O — 1 L O
0010 0002 0000 0010

00 10 00 00

1
—i#HF—0 — 1 O

Example: CIO 000210 in the above diagram cannot be output. By rewriting
the rung, as shown above, CIO 000210 can be turned ON for one cycle.

Rungs Requiring Rewriting
PLCs execute instructions in the order the mnemonics are entered so the sig-

nal flow (power flow) is from left to right in the ladder diagram. Power flows
from right to left cannot be programmed.

0000 0000 0002 0000 0000 0000 0002
00 03 11 01 02 03 11
I 1] :: > I I 1LX 1L

I I I O I Al B O
0000 0000 0000
01 02 00
1]
— | # ———
0000 0002 0000 0000 0002
04 12 01 04 12
11 I]l
B O I I B O

Example: The program can be written as shown in the diagram at the left
where TRO receives the branch. The same value is obtained, however, by the
rungs at the right, which are easier to understand. It is recommended, there-
fore, that the rungs at the left be rewritten to the rungs at the right.

Rewrite the rungs on the left below. They cannot be executed.
The arrows show signal flow (power flow) when the rungs consist of control
A
S - — |

relays.
o ©
' C E
Hﬁé”a S "
c : : b A E D
— T ———®- —)

C

“

Precautions

Section 2-2

2-2 Precautions

2-2-1 Condition Flags

Using Condition Flags

Note

Conditions flags are shared by all instructions, and will change during a cycle
depending on results of executing individual instructions. Therefore, be sure
to use Condition Flags on a branched output with the same execution condi-
tion immediately after an instruction to reflect the results of instruction execu-
tion. Never connect a Condition Flag directly to the bus bar because this will
cause it to reflect execution results for other instructions.

Example: Using Instruction A Execution Results

Correct Use Y
a L

Ll Mnemonic
! Instruction A

Instruction | Operand

Reflects instruction A Instruction A

Condition Flag execution results. AND -

Example: = Instruction B
j' } Instruction B

The same execution condition (a) is used for instructions A and B to execute
instruction B based on the execution results of instruction A. In this case,
instruction B will be executed according to the Condition Flag only if instruc-
tion A is executed.

o

Incorrect Use P

Preceding rung

]| % Instruction A

Reflects the execution results of
; the preceding rung if instruction
Condition Flag Ais not e xecuted.
Example: =

} } Instruction B

If the Condition Flag is connected directly to the left bus bar, instruction B will
be executed based on the execution results of a previous rung if instruction A
is not executed.

Condition Flags are used by all instruction within a single program (task) but
they are cleared when the task switches. Therefore execution results in the
preceding task will not be reflected later tasks. Since conditions flags are
shared by all instructions, make absolutely sure that they do not interfere with
each other within a single ladder-diagram program. The following is an exam-
ple.

55

Precautions

Section 2-2

56

Using Execution Results in N.C. and N.C. Inputs

The Condition Flags will pick up instruction B execution results as shown in
the example below even though the N.C. and N.O. input bits are executed

from the same output branch.

> |

Incorrect
Use

: Instruction A I

|
i Reflects instruction A execution
Condition Flag "eSults-
Example: =

]
|

' Reflects instruction B execution
Condition Flag results.
Example: =

H { |

Make sure each of the results is picked up once by an OUTPUT instruction to
ensure that execution results for instruction B will be not be picked up.

Correct
Use

- - Instruction A
Reflects instruction A
execution results. T

Condition Flag c
Example: =

| O

4 Reflects instruction A
Condition Flag execution results.
Example: = D

| |
= | O

C
} Instruction B

|

s

Precautions Section 2-2

Example: The following example will move #0200 to D00200 if D0O0100 con-
tains #0010 and move #0300 to DO0300 if DO0100 does not contain #0010.

| CMP
#0010

D00100

Incorrect
Use .
Reflects CMP execution results.

| | MOV
[I S R (1)
#0200

D00200

' Reflects MOV execution results.
MOV

rrrrr 2
y 4 #0300 @

D00300

The Equals Flag will turn ON if DO0100 in the rung above contains #0010.
#0200 will be moved to D00200 for instruction (1), but then the Equals Flag
will be turned OFF because the #0200 source data is not 0000 Hex. The MOV
instruction at (2) will then be executed and #0300 will be moved to D0O300. A
rung will therefore have to be inserted as shown below to prevent execution
results for the first MOVE instruction from being picked up.

1 CMP
#0010

Correct D00100

Use
I Reflects CMP execution results.

= A

% O

= B
|| O

| 1 MOV
#0200

D00200

MOV
1 #0300

D00300

57

Precautions

Section 2-2

Note

Using Execution Results from Differentiated Instructions

With differentiated instructions, execution results for instructions are reflected
in Condition Flags only when execution condition is met, and results for a pre-
vious rung (rather than execution results for the differentiated instruction) will
be reflected in Condition Flags in the next cycle. You must therefore be aware
of what Condition Flags will do in the next cycle if execution results for differ-
entiated instructions to be used.

In the following for example, instructions A and B will execute only if execution
condition C is met, but the following problem will occur when instruction B
picks up execution results from instruction A. If execution condition C remains
ON in the next cycle after instruction A was executed, then instruction B will
unexpectedly execute (by the execution condition) when the Condition Flag
goes from OFF to ON because of results reflected from a previous rung.

Previous rung

Incorregct C
Use

| | ? Instruction A

Reflects execution results for instruction A
‘ when execution condition is met.
. Reflects execution results for a previous
Condition Flag rung in the next cycle.
Example: =

I I ? Instruction B

In this case then, instructions A and B are not differentiated instructions, the
DIFU (of DIFD) instruction is used instead as shown below and instructions A
and B are both upwardly (or downwardly) differentiated and executed for one
cycle only.

Previous rung

% c
Correct
Use I } DIFU
D
D
]J I Instruction A

; Reflects instruction A execution results.

Condition Flag
Example: =

{ } Instruction B

The CS1-H, CJ1-H, or CJ1M CPU Units support instructions to save and load
the Condition Flag status (CCS(282) and CCL(283)). These can be used to
access the status of the Condition Flags at other locations in a task or in a dif-
ferent task.

Main Conditions Turning ON Condition Flags

58

Error Flag

The ER Flag will turn ON under special conditions, such as when operand
data for an instruction is incorrect. The instruction will not be executed when
the ER Flag turns ON.

Precautions

Section 2-2

Note

Note

When the ER Flag is ON, the status of other Condition Flags, such as the <,
>, OF, and UF Flags, will not change and status of the = and N Flags will vary
from instruction to instruction.

Refer to the descriptions of individual instructions in the CS/CJ-series Pro-
grammable Controllers Programming Manual (W340) for the conditions that
will cause the ER Flag to turn ON. Caution is required because some instruc-
tions will turn OFF the ER Flag regardless of conditions.

The PLC Setup Settings for when an instruction error occurs determines
whether operation will stop when the ER Flag turns ON. In the default setting,
operation will continue when the ER Flag turns ON. If Stop Operation is spec-
ified when the ER Flag turns ON and operation stops (treated as a program
error), the program address at the point where operation stopped will be
stored at in A298 to A299. At the same time, A29508 will turn ON.

Equals Flag

The Equals Flag is a temporary flag for all instructions except when compari-
son results are equal (=). It is set automatically by the system, and it will
change. The Equals Flag can be turned OFF (ON) by an instruction after a
previous instruction has turned it ON (OFF). The Equals Flag will turn ON, for
example, when MOV or another move instruction moves 0000 Hex as source
data and will be OFF at all other times. Even if an instruction turns the Equals
Flag ON, the move instruction will execute immediately and the Equals Flag
will turn ON or OFF depending on whether the source data for the move
instruction is 0000 Hex or not.

Carry Flag

The CY Flag is used in shift instructions, addition and subtraction instructions
with carry input, addition and subtraction instruction borrows and carries, as
well as with Special 1/0 Unit instructions, PID instructions, and FPD instruc-
tions. Note the following precautions.

1. The CY Flag can remain ON (OFF) because of execution results for a cer-
tain instruction and then be used in other instruction (an addition and sub-
traction instruction with carry or a shift instruction). Be sure to clear the
Carry Flag when necessary.

2. The CY Flag can be turned ON (OFF) by the execution results for a certain

instruction and be turned OFF (ON) by another instruction. Be sure the
proper results are reflected in the Carry Flag when using it.

Less Than and Greater Than Flags

The < and > Flags are used in comparison instruction, as well as in the LMT,
BAND, ZONE, PID and other instructions.

The < or > Flag can be turned OFF (ON) by another instruction even if it is
turned ON (OFF) by execution results for a certain instruction.

Negative Flag

The N Flag is turned OFF when the leftmost bit of the instruction execution
results word is “1” for certain instructions and it is turned OFF unconditionally
for other instruction.

Specifying Operands for Multiple Words

With the CS/CJ-series PLCs, an instruction will be executed as written even if
an operand requiring multiple words is specified so that all of the words for the
operand are not in the same area. In this case, words will be taken in order of
the PLC memory addresses. The Error Flag will not turn ON.

59

Precautions

Section 2-2

As an example, consider the results of executing a block transfer with
XFER(070) if 20 words are specified for transfer beginning with W500. Here,
the Work Area, which ends at W511, will be exceeded, but the instruction will
be executed without turning ON the Error Flag. In the PLC memory
addresses, the present values for timers are held in memory after the Work
Area, and thus for the following instruction, W500 to W511 will be transferred
to DO0O00O0 to D00011 and the present values for TO000 to TO007 will be trans-
ferred to DO0012 to D00019.

Note Refer to Appendix D Memory Map of PLC Memory Addresses for specific
PLC memory addresses.
\ -
I XFER W500 D00000
. o o || e ©
&10] Number of word -
umber ot woras W511 | —. D00011
WS500| First source word T0000 D00012
D00000| First destination word © o © o
Irst destination wor
T0007) \D00019

2-2-2 Special Program Sections

CS/CJ-series programs have special program sections that will control
instruction conditions. The following special program sections are available.

Program section

Instructions Instruction condition Status

Subroutine

SBS, SBN and RET instruc-
tions

Subroutine program is exe-
cuted.

The subroutine program sec-
tion between SBN and RET
instructions is executed.

IL - ILC section

IL and ILC instructions

Step Ladder section

STEP S instructions and
STEP instructions

Section is interlocked

The output bits are turned
OFF and timers are reset.
Other instructions will not be
executed and previous status
will be maintained.

FOR-NEXT loop

FOR instructions and NEXT
instructions

JMPO - JMEO section

instructions

JMPO instructions and JMEO

Break in progress.

Looping

Jump

Block program section

BPRG instructions and
BEND instructions

Block program is executing.

The block program listed in
mnemonics between the
BPRG and BEND instruc-
tions is executed.

Instruction Combinations

The following table shows which of the special instructions can be used inside
other program sections.

Subroutine IL-ILC Step ladder FOR - NEXT | JMPO-JMEO |Blockprogram
section section loop section section

Subroutine Not possible. Not possible. Not possible. Not possible. Not possible. Not possible.
IL-ILC OK Not possible. Not possible. OK OK Not possible.
Step ladder Not possible. OK Not possible. Not possible. OK Not possible.
section
FOR - NEXT OK OK Not possible. OK OK Not possible.
loop
JMPO - JMEO |OK OK Not possible. Not possible. Not possible. Not possible.
Block pro- OK OK OK Not possible. OK Not possible.
gram section

60

Precautions

Section 2-2

Subroutines

Instructions Not Available

in Subroutines

Note Instructions that specify program areas cannot be used for programs in other

tasks. Refer to 4-2-2 Task Instruction Limitations for details.

Place all the subroutines together just before the END(001) instruction in all
programs but after programming other than subroutines. (Therefore, a subrou-
tine cannot be placed in a step ladder, block program, FOR - NEXT, or JMPO -
JMEQO section.) If a program other than a subroutine program is placed after a
subroutine program (SBN to RET), that program will not be executed.

Program

Subroutine

Program

Subroutine

The following instructions cannot be placed in a subroutine.

der

Function Mnemonic Instruction
Process Step Control STEP(008) Define step ladder section
SNXT(009) Step through the step lad-

Note Block Program Sections

A subroutine can include a block program section. If, however, the block pro-
gram is in WAIT status when execution returns from the subroutine to the
main program, the block program section will remain in WAIT status the next

time it is called.

61

Precautions

Section 2-2

Instructions Not Available
in Step Ladder Program

Sections

Note

62

Function

Mnemonic

Instruction

Sequence Control

FOR(512), NEXT(513), and
BREAK(514)

FOR, NEXT, and BREAK
LOOP

END(001) END

IL(002) and ILC(003) INTERLOCK and INTER-
LOCK CLEAR

JMP(004) and JME(005) JUMP and JUMP END

CJP(510) and CJPN(511) CONDITIONAL JUMP and

CONDITIONAL JUMP NOT

JMPO(515) and JMEO(516)

MULTIPLE JUMP and MULTI-
PLE JUMP END

Subroutines

SBN(092) and RET(093)

SUBROUTINE ENTRY and
SUBROUTINE RETURN

Block Programs

IF(802) (NOT), ELSE(803),
and IEND(804)

Branching instructions

BPRG(096) and BEND(801)

BLOCK PROGRAM BEGIN/
END

EXIT(806) (NOT)

CONDITIONAL BLOCK EXIT
(NOT)

LOOP(809) and LEND(810)
(NOT)

Loop control

WAIT(805) (NOT)

ONE CYCLE WAIT (NOT)

TIMW(813) TIMER WAIT
TMHW(815) HIGH-SPEED TIMER WAIT
CNTW(814) COUNTER WAIT

BPPS(811) and BPRS(812)

BLOCK PROGRAM PAUSE
and RESTART

1. A step ladder program section can be used in an interlock section (be-
tween IL and ILC). The step ladder section will be completely reset when
the interlock is ON.

A step ladder program section can be used between MULTIPLE JUMP

2.

(JMP0) and MULTIPLE JUMP END (JMEO).

Precautions

Section 2-2

Instructions Not Available
in Block Program Sections

Note

The following instructions cannot be placed in block program sections.

Classification by Mnemonic Instruction
Function
Sequence Control FOR(512), NEXT(513), FOR, NEXT, and BREAK
and BREAK(514) LOOP
END(001) END
IL(002) and ILC(003) INTERLOCK and INTER-
LOCK CLEAR

JMPO(515) and JMEO(516) | MULTIPLE JUMP and
MULTIPLE JUMP END

Sequence Input UP(521) CONDITION ON
DOWN(522) CONDITION OFF
Sequence Output DIFU DIFFERENTIATE UP
DIFD DIFFERENTIATE DOWN
KEEP KEEP
ouT OUTPUT
OUT NOT OUTPUT NOT
Timer/Counter TIM TIMER
TIMH HIGH-SPEED TIMER
TMHH(540) ONE-MS TIMER
TTIM(087) ACCUMULATIVE TIMER
TIML(542) LONG TIMER
MTIM(543) MULTI-OUTPUT TIMER
CNT COUNTER
CNTR REVERSIBLE COUNTER
Subroutines SBN(092) and RET(093) SUBROUTINE ENTRY
and SUBROUTINE
RETURN
Data Shift SFT SHIFT
Ladder Step Control STEP(008) and STEP DEFINE and STEP
SNXT(009) START
Data Control PID PID CONTROL
Block Program BPRG(096) BLOCK PROGRAM
BEGIN
Damage Diagnosis FPD(269) FAILURE POINT DETEC-
TION
1. Block programs can be used in a step ladder program section.
2. Ablock program can be used in an interlock section (between IL and ILC).
The block program section will not be executed when the interlock is ON.
3. A block program section can be used between MULTIPLE JUMP (JMPO)
and MULTIPLE JUMP END (JMEQO).
4. A JUMP instruction (JMP) and CONDITIONAL JUMP instruction (CJP/

CJPN) can be used in a block program section. JUMP (JMP) and JUMP
END (JME) instructions, as well as CONDITIONAL JUMP (CJP/CJPN)
and JUMP END (JME) instructions cannot be used in the block program
section unless they are used in pairs. The program will not execute prop-
erly unless these instructions are paired.

63

Checking_; Prog_]rams

Section 2-3

2-3 Checking Programs

2-3-1

CS/CJ-series programs can be checked at the following stages.
* Input check during Programming Console input operations
» Program check by CX-Programmer
* Instruction check during execution
* Fatal error check (program errors) during execution

Errors during Programming Device Input

Programming Console

Errors at the following points will be displayed on the Programming Console
during input.

Error display Cause

CHK MEM Pin 1 on the DIP switch on the CPU Unit is set to ON (write-protect).

I0 No. ERR An illegal I/O input has been attempted.

CX-Programmer
The program will be automatically checked by the CX-Programmer at the fol-
lowing times.

Timing Checked contents

When inputting Instruction inputs, operand inputs, programming patterns
ladder diagrams

When loading All operands for all instructions and all programming patterns
files

When download- | Models supported by the CS/CJ Series and all operands for all
ing files instructions

During online Capacity, etc.
editing

The results of checking are output to the text tab of the Output Window. Also,
the left bus bar of illegal program sections will be displayed in red in ladder
view.

2-3-2 Program Checks with the CX-Programmer

The errors that are detected by the program check provided by the CX-Pro-
grammer are listed in the following table.

The CX-Programmer does not check range errors for indirectly addressed
operands in instructions. Indirect addressing errors will be detected in the pro-
gram execution check and the ER Flag will turn ON, as described in the next
section. Refer to the CS/CJ-series Programmable Controllers Programming
Manual (W340) for details.

When the program is checked on the CX-Programmer, the operator can spec-
ify program check levels A, B, and C (in order of the seriousness of the error),
as well as a custom check level.

Area Check
lllegal data: Ladder | Instruction locations
diagramming /0 lines
Connections

Instruction and operation completeness
Instruction support | Instructions and operands supported by PLC
by PLC Instruction variations (NOT, !, @, and %)
Object code integrity

Checking_j Programs Section 2-3

Area Check
Operand ranges Operand area ranges

Operand data types

Access check for read-only words

Operand range checks, including the following.

e Constants (#, &, +, -)

« Control codes

« Area boundary checks for multi-word operands
 Size relationship checks for multi-word operands
« Operand range overlaps

» Multi-word allocations

« Double-length operands

» Area boundary checks for offsets

Program capacity Number of steps

for PLC Overall capacity
Number of tasks

Syntax Call check for paired instructions
e IL-ILC

* JMP-JME, CJP/CIPN-JME

* SBS-SBN-RET, MCRO-SBN-RET
e STEP-SNXT

« BPRG-BEND

* |IF-IEND

* LOOP-LEND

Restricted programming locations for BPRG-BEND

Restricted programming locations for SBN-RET

Restricted programming locations for STEP—SNXT

Restricted programming locations for FOR—-NEXT

Restricted programming locations for interrupt tasks

Required programming locations for BPRG-BEND

Required programming locations for FOR—NEXT

lllegal nesting

END(001) instruction

Number consistency

Ladder diagram Stack overflows
structure
Output duplication | Duplicate output check
* By bit
« By word

« Timer/counter instructions

e Long words (2-word and 4-word)

« Multiple allocated words

« Start/end ranges

¢ FAL numbers

« Instructions with multiple output operands

Tasks Check for tasks set for starting at beginning of operation

Task program allocation

Note Output duplication is not checked between tasks, only within individual tasks.

65

Checking_; Prog_]rams

Section 2-3

Multi-word Operands

Memory area boundaries are checked for multi-word operands for the pro-

gram check as shown in the following table.

CX-Programmer

Programming
Consoles

The following functionality is provided by the CX-Programmer
for multi-word operands that exceed a memory area boundary.

* The program cannot be transferred to the CPU Unit.

The program also cannot be read from the CPU Unit.
Compiling errors are generated for the program check.
Warnings will appear on-screen during offline programming.
Warnings will appear on-screen during online editing in

PROGRAM or MONITOR mode.

Checked when pro-
grams are input, i.e.,
operands that
exceed a memory
are boundary cannot
be written.

2-3-3 Program Execution Check

Operand and instruction location checks are performed on instructions during
input from Programming Devices (including Programming Consoles) as well
as during program checks from Programming Devices (excluding Program-
ming Consoles). However, these are not final checks.

The following checks are performed during instruction execution.

Type of error

Flag that turns ON for error

Stop/Continue operation

1.Instruction Processing Error

ER Flag

The Instruction Processing Error Flag
(A29508) will also turn ON if Stop
Operation is specified when an error
occurs.

A setting in the PLC Setup can be used
to specify whether to stop or continue
operation for instruction processing
errors. The default is to continue opera-
tion.

A program error will be generated and
operation will stop only if Stop Opera-
tion is specified.

2.Access Error

AER Flag

The Access Error Flag (A29510) will
turn ON if Stop Operation is specified
when an error occurs.

A setting in the PLC Setup can be used
to specify whether to stop or continue
operation for instruction processing
errors. The default is to continue opera-
tion.

A program error will be generated and
operation will stop only if Stop Opera-
tion is specified.

3.lllegal Instruction Error

lllegal Instruction Error Flag (A29514)

Fatal (program error)

4.UM (User Memory) Overflow Error

UM Overflow Error Flag (A29515)

Fatal (program error)

Instruction Processing Errors

An instruction processing error will occur if incorrect data was provided when
executing an instruction or an attempt was made to execute an instruction out-
side of a task. Here, data required at the beginning of instruction processing
was checked and as a result, the instruction was not executed, the ER Flag
(Error Flag) will be turned ON and the EQ and N Flags may be retained or
turned OFF depending upon the instruction.

The ER Flag (error Flag) will turn OFF if the instruction (excluding input
instructions) ends normally. Conditions that turn ON the ER Flag will vary with
individual instructions. See descriptions of individual instructions in the CS/
CJ-series Programmable Controllers Programming Manual (W340) for more
details.

If Instruction Errors are set to Stop Operation in the PLC Setup, then opera-
tion will stop (fatal error) and the Instruction Processing Error Flag (A29508)
will turn ON if an instruction processing error occurs and the ER Flag turns
ON.

66

Checking_j Programs

Section 2-3

Other Errors

Note

Note

lllegal Access Errors

lllegal access errors indicate that the wrong area was accessed in one of the
following ways when the address specifying the instruction operand was
accessed.

a) A read or write was executed for a parameter area.

b) A write was executed in a memory area that is not mounted (see note).
c) A write was executed in an EM area specified as EM File Memory.

d) A write was executed in a read-only area.

e) The value specified in an indirect DM/EM address in BCD mode was
not BCD (e.g., *D000001 contains #A000).

Instruction processing will continue and the Error Flag (ER Flag) will not turn
ON if an access error occurs, but the Access Error Flag (AER Flag) will turn
ON.

An access error will occur for the following:

» When a specified EM address exceeds 32767 (example: E32768) for
the current bank.

 The final bank (example: C) is specified for an indirect EM address in
BIN mode and the specified word contains 8000 to FFFF Hex (exam-
ple: @EC_00001 contains #8000).

 The current bank (example: C) is specified for an indirect EM address
in BIN mode and the specified words contains 8000 to FFFF Hex (ex-
ample: @EC_00001 contains #8000)

» An IR register containing the internal memory address of a bit is used
as a word address or an IR containing the internal memory address of
aword is used as a bit address.

If Instruction Errors are set to Stop Operation in the PLC Setup, then opera-
tion will stop (fatal error) and the “lllegal Access Error Flag” (A29510) will turn
ON if an illegal access error occurs and the AER Flag turns ON.

The Access Error Flag (AER Flag) will not be cleared after a task is executed.
If Instruction Errors are set to Continue Operation, this Flag can be monitored
until just before the END(001) instruction to see if an illegal access error has
occurred in the task program. (The status of the final AER Flag after the entire
user program has been executed will be monitored if the AER Flag is moni-
tored on a Programming Console.)

Illegal Instruction Errors

lllegal instruction errors indicate that an attempt was made to execute instruc-
tion data other than that defined in the system. This error will nhormally not
occur as long as the program is created on a CS/CJ-series Programming
Device (including Programming Consoles).

In the rare even that this error does occur, it will be treated as a program error,
operation will stop (fatal error), and the lllegal Instruction Flag (A29514) will
turn ON.

UM (User Memory) Overflow Errors

UM overflow errors indicate that an attempt was made to execute instruction
data stored beyond the last address in the user memory (UM) defined as pro-
gram storage area. This error will normally not occur as long as the program is
created on a CS/CJ-series Programming Device (including Programming
Consoles).

67

Checking_; Prog_]rams

Section 2-3

In the rare even that this error does occur, it will be treated as a program error,
operation will stop (fatal error), and the UM Overflow Flag (A29515) will turn

ON.

2-3-4 Checking Fatal Errors

The following errors are fatal program errors and the CPU Unit will stop run-
ning if one of these occurs. When operation is stopped by a program error, the
task number where operation stopped will be stored in A294 and the program
address will be stored in A298/A299. The cause of the program error can be
determined from this information.

Address Description Stored Data

A294 The type of task and the task number at the Cyclic task: 0000 to 001F Hex (cyclic tasks 0 to 31)
point where operation stopped will be stored Interrupt task: 8000 to 80FF Hex (interrupt tasks 0 to 255)
here if operation stops due to a program error.
FFFF Hex will be stored if there are no active
cyclic tasks in a cycle, i.e., if there are no cyclic
tasks to be executed.

A298/A299 | The program address at the point where opera- | A298: Rightmost portion of program address

tion stopped will be stored here in binary if
operation stops due to a program error.

If the END(001) instruction is missing (A29511
will be ON), the address where END(001) was
expected will be stored.

If there is a task execution error (A29512 will be
ON), FFFFFFFF Hex will be stored in A298/
A299.

A299: Leftmost portion of program address

68

Note If the Error Flag or Access Error Flag turns ON, it will be treated as a program
error and it can be used to stop the CPU from running. Specify operation for
program errors in the PLC Setup.

Checking_j Programs

Section 2-3

Program error

Description

Related flags

No END Instruction

An END instruction is not present in the
program.

The No END Flag (A29511) turns ON.

Error During Task Execution

No task is ready in the cycle.

No program is allocated to a task.

The corresponding interrupt task num-
ber is not present even though the exe-

cution condition for the interrupt task
was met.

The Task Error Flag (29512) turns ON.

Instruction Processing Error (ER Flag
ON) and Stop Operation set for Instruc-
tion Errors in PLC Setup

The wrong data values were provided
in the operand when an attempt was
made to execute an instruction.

The ER Flag turns ON and the Instruc-
tion Processing Error Flag (A29508)
turns ON if Stop Operation set for
Instruction Errors in PLC Setup.

lllegal Access Error (AER Flag ON) and
Stop Operation set for Instruction
Errors in PLC Setup

A read or write was executed for a
parameter area.

A write was executed in a memory area
that is not mounted (see note).

A write was executed in an EM area
specified as EM File Memory.

A write was executed in a read-only
area.

The value specified in an indirect DM/
EM address in BCD mode was not
BCD.

AER Flag turns ON and the lllegal
Access Error Flag (A29510) turns ON if
Stop Operation set for Instruction
Errors in PLC Setup

Indirect DM/EM BCD Error and Stop
Operation set for Instruction Errors in
PLC Setup

The value specified in an indirect DM/
EM address in BCD mode is not BCD.

AER Flag turns ON and the DM/EM
Indirect BCD Error Flag (A29509) turns
ON if Stop Operation set for Instruction
Errors in PLC Setup

Differentiation Address Overflow Error

During online editing, more than
131,071 differentiated instructions have
been inserted or deleted.

The Differentiation Overflow Error Flag
(A29513) turns ON.

UM (User Memory) Overflow Error

An attempt was made to execute
instruction data stored beyond the last
address in user memory (UM) defined
as program storage area.

The UM (User Memory) Overflow Flag
(A29516) turns ON.

lllegal Instruction Error

An attempt was made to execute an
instruction that cannot be executed.

The lllegal Instruction Flag (A29514)
turns ON.

69

Checking_; Prog_]rams

Section 2-3

70

SECTION 3
| nstruction Functions

This section outlines the instructions that can be used to write user programs.

3-1 Sequencelnput INSLrUCLIONSot e 72
3-2 Sequence Output INStrUCHiONS.o vt 74
3-3 Sequence Control INStruCtionscovi v e 7
3-4 Timer and Counter INStructions.t 80
3-5 Comparison INStrUCtioNS.o oot e 84
3-6 DataMovement INStructions.ottt 88
3-7 DaaShift Instructions 91
3-8 Increment/Decrement INStructions 95
3-9 Symbol MathiInstructions. i 96
3-10 Conversion INStruCtionS.o it 101
3-11 LOgiCINStIUCHIONS . . v v o ettt et et e 107
3-12 Special Math Instructionst 109
3-13 Foating-point Math Instructionsccciiiiiiiinnnn.. 110
3-14 Double-precision Floating-point Instructions

(CS1-H, CI1-H,CIIM, orCSID ONlY) ..ot 114
3-15 Table DataProcessing Instructions., 118
3-16 DataControl INStructionst 122
3-17 Subroutine INStruCtionS.o 125
3-18 Interrupt Control INStructions 127
3-19 High-speed Counter and Pulse Output Instructions (CJIM-CPU22/23 Only) 129
320 StEPINSIIUCLIONS . . . o oot 130
3-21 Basicl/OUnNitINStructions.ovo v 131
3-22 Serial CommunicationsInstructions. o i 132
3-23 Network INStruCtions. v 133
3-24 FileMemory INStruCtionSot 135
3-25 Display INStrUCtionso vt e 136
3-26 Clock INStrucCtions.o 136
3-27 Debugging INStruCtions.cv vttt 137
3-28 Failure DiagnosiSINStrUCtions. oot 138
3-29 Other INStrUCtioNS . . . oo v 139
3-30 Block Programming Instructions, 140
3-31 Text String Processing Instructions., 146
3-32 Task Control INStruCtionso 149

71

Sequence I nput I nstructions

Section 3-1

3-1 Sequence Input Instructions

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

LOAD
LD
@LD
%LD
LD
'@LD
1%LD

Bus bar

|_

Starting
point of
block

Indicates a logical start and creates an ON/OFF execution condition based
on the ON/OFF status of the specified operand bit.

Not required

LOAD NOT

LD NOT
@LD NOT
%LD NOT
ILD NOT
1@LD NOT
1%LD NOT
CS1-H, CJ1-H, or
CJ1M CPU Units
only: @LD NOT
%LD NOT
1@LD NOT
1%LD NOT

Bus bar

Starting
point of
block

Indicates a logical start and creates an ON/OFF execution condition based
on the reverse of the ON/OFF status of the specified operand bit.

Not required

AND

AND
@AND
%AND

'AND

I@AND
19%AND

-

Takes a logical AND of the status of the specified operand bit and the cur-
rent execution condition.

Required

AND NOT

AND NOT
@AND NOT
%AND NOT
IAND NOT
I@AND NOT
1%AND NOT
CS1-H, CJ1-H, or
CJ1M CPU Units
only: @AND NOT
%AND NOT
I@AND NOT
1%AND NOT

Reverses the status of the specified operand bit and takes a logical AND
with the current execution condition.

Required

OR

OR
@OR
%O0R

IOR
I@OR
1%0R

Takes a logical OR of the ON/OFF status of the specified operand bit and
the current execution condition.

Required

OR NOT

OR NOT
@OR NOT
%O0R NOT
IOR NOT
I@OR NOT
1%0R NOT
CS1-H, CJ1-H, or
CJ1M CPU Units
only: @OR NOT
%O0R NOT
I@OR NOT
1%0R NOT

Reverses the status of the specified bit and takes a logical OR with the cur
rent execution condition.

Required

72

Sequence I nput I nstructions Section 3-1
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
AND LOAD Logic block -Logic block Takes a logical AND between logic blocks. .
AND LD - Required
LD
to Logic block A
LD N
to Logic block B
AND LD - Serial connection between logic block A and
logic block B.
OR LOAD ; ;
; Takes a logical OR between logic blocks.
OR LD | Logic block 9 ¢ Required
Logic block LD
to Logic block A
LD N
to Logic block B
ORLD - Parallel connection between logic block A
and logic block B.
NOT Reverses the execution condition.
NOT Required
520
CONDITION ON UP(521) turns ON the execution condition for one cycle when the execu-
upP tion condition goes from OFF to ON. Required
521
CONDITION OFF DOWN(522) turns ON the execution condition for one cycle when the exe-
DOWN cution condition goes from ON to OFF. Required
522
BIT TEST LD TST(350), AND TST(350), and OR TST(350) are used in the program
LD TST| — |'ST(850) |~ |like LD, AND, and OR; the execution condition is ON when the specified bit | Not required
350 S in the specified word is ON and OFF when the bit is OFF.
N
S: Source word
N: Bit number
BIT TEST LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the pro-
LD TSTN| ~ |TSTN@51) [| gram like LD NOT, AND NOT, and OR NOT; the execution condition is OFF | Not required
351 when the specified bit in the specified word is ON and ON when the bit is
S OFF.
N
S: Source word
N: Bit number
BIT TEST LD TST(350), AND TST(350), and OR TST(350) are used in the program
AND TST| — L2 ST®9 = llike LD, AND, and OR; the execution condition is ON when the specified bit | Required
350 S in the specified word is ON and OFF when the bit is OFF.
N
S: Source word
N: Bit number

73

Sequence Output | nstructions Section 3-2
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
BIT TEST LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the pro-
AND TSTN ANDTSTN@s!) [| gram like LD NOT, AND NOT, and OR NOT; the execution condition is OFF | Required
351 when the specified bit in the specified word is ON and ON when the bit is
S OFF.
N
S: Source word
N: Bit number
BIT TEST LD TST(350), AND TST(350), and OR TST(350) are used in the program
ORTST| — |_TST(50) [T |like LD, AND, and OR; the execution condition is ON when the specified bit | Required
350 S in the specified word is ON and OFF when the bit is OFF
N
S: Source word
N: Bit number
BIT TEST LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the pro-
or TsTN | 1 TSTNB51) | gram like LD NOT, AND NOT, and OR NOT; the execution condition is OFF Required
351 S when the specified bit in the specified word is ON and ON when the bit is
OFF.
N
S: Source word
N: Bit number
3-2 Sequence Output Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
OUTPUT Outputs the result (execution condition) of the logical processing to the spec- | Output
ouT ified bit. Required
IoUT
OUTPUT NOT Reverses the result (execution condition) of the logical processing, and out- | Output
OUT NOT puts it to the specified bit. Required
IOUT NOT
KEEP : Output
- Operates as a latching relay.
Keep | S SeY KEEP(011) p g relay. Required
IKEEP B - Set KEEP |—
011 | (Reset) —— A c - A B c
B: Bit
_| Reset
B C
S execution
condition
R execution
condition
Status of B

74

Sequence Output | nstructions Section 3-2
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
B:EFERENT'ATE — biFu13) DIFU(013) turns the designated bit ON for one cycle when the Output
BIFU execution condition goes from OFF to ON (rising edge). Required
IDIFU B oo it
013 | - Bit xecution condition
Status of B
One cycle
BIC[):V'T/ENRENTIATE — oiFpo12) DIFD(014) turns the designated bit ON for one cycle when the Output
DIFD execution condition goes from ON to OFF (falling edge). Required
IDIFD B _
014 | B: Bit Execution condition :
Status of B
One cycle
SET — SET turns the operand bit ON when the execution condition is ON. Outpgt
SET SET oN Required
@SET : "
%SET B (I)Eg(gcéquon condition gpp
ISET | 5. gy
I@SET |- B ON
'%SET Status of B OFF
RESET S RSET turns the operand bit OFF when the execution condition is ON Output
RSET RSET oN Required
@RSET . »
SURSET B Efgtgjlg%n condition g
IRSET B: Bit
I@RSET |P P! oN
1%RSET Status of B OFF
MULTIPLE BIT e . . Output
SET — seTaao) SETA(530) turns ON the specified mﬁ?\ﬁr of consecutive bits. Required
SETA D
@SETA 15 E 0
530 N1 : .
D N2 bits are set to 1
N2 D1 (ON).
D: Beginning D+2
word
N1: Beginning bit
N2: Number of
bits
MULTIPLE BIT . : . Output
RESET — RsTA®S31) RSTA(531) turns OFF the specified nur:lt:er of consecutive bits. Required
RSTA D .
@RSTA
15 0
531 N1 E
N2 D : N2 bits are reset to 0
D+1 (OFF).
D: Beginning D+2
word
N1: Beginning bit
N2: Number of
bits

75

Sequence Output | nstructions Section 3-2
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
SINGLE BIT SET SETB(532) turns ON the specified bit in the specified word when the execu- | Output
(CS1-H, CJ1-H, — | SETB(532) tion condition is ON. Required
CJ1M, or CS1D D Unlike the SET instruction, SETB(532) can be used to set a bitin a DM or EM
only) word.
SETB N
@SETB
|
SE—,ng D: Word address
N: Bit number
SINGLE BIT RSTB(533) turns OFF the specified bit in the specified word when the execu- | Output
RESET ~ | RSTB(533) tion condition is ON. Required
(CS1-H, CJ1-H, Unlike the RSET instruction, RSTB(533) can be used to reset a bitin a DM or
CJ1M, or CS1D D EM word.
only) N
RSTB
@,§§¥g D: Word address
533 | N: Bit number
SINGLE BIT OUTB(534) outputs the result (execution condition) of the logical processing | Output
OUTPUT | OUTB(534) to the specified bit. Required
(CS1-H, CJ1-H, Unlike the OUT instruction, OUTB(534) can be used to control a bit in a DM
CJ1M, or CS1D D or EM word.
only) N
ouTB
@,88¥g D: Word address

534

N: Bit number

76

Sequence Control Instructions Section 3-3
3-3 Sequence Control Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
END ; Output
Indicates the end of a program.)
END END(001) completes the execution of a program for that cycle. No Not required
001 instructions written after END(001) will be executed. Execution
proceeds to the program with the next task number. When the
program being executed has the highest task number in the program,
END(001) marks the end of the overall main program.
Task1 Program A
~——— To the next task number
END
Task2 Program B)
——— To the next task number
END
Task n Pro'gram z
End of the main program
END
I/O refreshing
NO OPERATION This instruction has no function. (No processing is performed for NOP(000).) Output
NOP Not required
000
INTERLOCK Output
Interlocks all outputs between IL(002) and ILC(003) when the -
IL IL(002) | |execution condition for IL(002) is OFF. IL(002) and ILC(003) are Required
002 normally used in pairs.

Execution Execution
Execution condition ON condition OFF

condition

e et

Normal Outputs
execution interlocked.

Interlocked section
of the program

ILC -1

_________ -

77

Sequence Contral Instructions

Section 3-3

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
INTERLOCK Interlocks all outputs between IL(002) and ILC(003) when the execution condi- | Output
CLEAR ILC(003)| |tion for IL(002) is OFF. IL(002) and ILC(003) are normally used in pairs. Not required
ILC
003
JUMP — IMP(004) When the execution condition for JMP(004) is OFF, program Output
JMP execution jumps directly to the first JME(005) in the program with the Required
004 N same jump number. JMP(004) and JME(005) are used in pairs.
N: Jump number Execution condition .
ON OFF Instructions
o L I R A jumped
N \‘.
| Instructions in this section
H > are not executed and out-
Instructions i put status is maintained.
executed ! The instruction execution
! time for these instructions
! is eliminated.
JME F---------- '1 _—— /
Y l
JUMP END Indicates the end of a jump initiated by JMP(004) or CJP(510). Output
JME JME(005) Not required
005 N
N: Jump number
JC'S)'GIEITIONAL —CJP(510) The operation of CJP(510) is the basically the opposite of JMP(004). Ompl_‘t
When the execution condition for CJP(510) is ON, program execution Required
cJp N jumps directly to the first JME(005) in the program with the same jump
510 number. CJP(510) and JME(005) are used in pairs.
N: Jump number Execution Execution
condition OFF condition ON
_| | o |- P ~N Instructions
' jumped
N . /
l‘| > Instructions in this section
; i are not executed and out-
Lr;(s;(r:ld?ggns : put status is maintained.
/ The instruction execution
/ time for these instructions
/ is eliminated.
JME ---o-m--1 ----- 7
Y |
JCL?A’;‘FE"T'ONA'- ——{CJPN(511)| | The operation of CUPN(511) is almost identical to JMP(004). Output
en the execution condition for is , program execution
When th i dition for CJP(004) is OFF, prog i Not required
CJPN N jumps directly to the first JME(005) in the program with the same jump
511 number. CJPN(511) and JME(005) are used in pairs.
N: Jump number Execution Execution
condition ON condition OFF
—F— cupN |----p----- L 7 Instructions
Y\ jumped
N \ /
'; Instructions in this section
' >~ are not executed and out-
Instructions ! put status is maintained.
executed ! The instruction execution
! time for these instructions
! is eliminated.
JME [=-------- ---- 7
N |

78

Section 3-3

Location

Sequence Control Instructions

Function

Execution
condition

Instruction
Mnemonic
Code

Symbol/Operand

Output
Required

MULTIPLE JUMP
JMPO
515

JMPO(515)

JMPO

When the execution condition for IMP0(515) is OFF, all instructions from

Execution
condition a ON condition a OFF
Instructions

jumped

-

Instructions
executed

Instructions
executed
;

---------- foh
Instructions

jumped

Execution

Execution

When the execution condition for JMPO(515) is OFF, all instructions
from JMPO(515) to the next JMEO(516) in the program are processed
as NOP(000). Use JMP0(515) and JMEOQ(516) in pairs. There is no
limit on the number of pairs that can be used in the program.

Jumped instructions
are processed as
NOP(000). Instruction

Execution tion ti
condition b ON condition b OFF &X€cution imes are
the same as

NOP(000).

]

Output
Not required

MULTIPLE JUMP

END
JMEO
516

JMEO(516)

JMPO(515) to the next IMEO(516) in the program are processed as NOP(000)
Use JMPO0(515) and JMEO(516) in pairs. There is no limit on the number of
pairs that can be used in the program.

Output
Not required

FOR-NEXT

FOR(512)

LOOPS

FOR

pairs.

N

512

loops

N: Number of

The instructions between FOR(512) and NEXT(513) are repeated a
specified number of times. FOR(512) and NEXT(513) are used in

FOR

Repeated N times

N

Repeated program section

Output
Required

BREAK LOOP
BREAK

514

BREAK(514)

Programmed in a FOR-NEXT loop to cancel the execution of the loop
for a given execution condition. The remaining instructions in the loop

are processed as NOP(000) instructions.

Condition a ON

N repetltlons

[l
]
1
1
]
1
!
]
]
]
1
1
1
]
1
'
I

Repetitiol
forced to

| /-

E Processed as
1 NOP(000).

|

ns
end.

Output
Not required

FOR-NEXT

LOOPS
NEXT

513

NEXT(513)

The instructions between FOR(512) and NEXT(513) are repeated a specified
number of times. FOR(512) and NEXT(513) are used in pairs.

79

Timer and Counter Instructions Section 3-4
3-4 Timer and Counter Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
TIMER — 1M TIM operates a decrementing timer with units of 0.1-s. The setting Output
TIM(BCD) range for the set value (SV) is 0 t0 999.9 s. Required
N
S Timer input SEF
N: Timer number Timer PV
S: Set value
TIMX Completion ON
(Binary) | —|TIMX(550) Flag OFF
(CS1-H, CJ1-H, i]]
CJ1M, or CS1D N Timer input turns OFF before Completion Flag turns ON.
only) s on
Timer input OFF
N: Timer number
S: Set value Timer PV
Completion ON
Flag OF
.IHII,SEE{SPEED —{TIMH(015) TIMH(015) operates a decrementing timer with units of 10-ms. The Outpgt
TIMH setting range for the set value (SV) is 0 to 99.99 s. Required
N
015 Timer input SEF
(BCD) S —
N: Timer number Timer PV
S: Set value Y
TIMHX| | Completion ©N
551 TIMHX(551) Flag P OFF
(Binary) N)))
(CS1-H, CJ1-H, Timer input turns OFF before Completion Flag turns ON.
CJ1M, or CS1D S) . ON
only) Timer input e
N: Timer number sv N
S: Set value Timer PV J\']
0
Completion ON
Flag OFF
ONE-MS TIMER TMHH(540) operates a decrementing timer with units of 1-ms. The setting Output
TMHH [TMHH(540)] | range for the set value (SV) is 0 t0 9.999 s. Required
540
(BCD) N The timing charts for TMHH(540) are the same as those given above for
S TIMH(015).
N: Timer number
S: Set value
TMHHX
552 |~ [TMHHX(552)
(BCD) N
(CS1-H, CJ1-H,
CJ1M, or CS1D S
only)
N: Timer number
S: Set value

80

Timer and Counter Instructions

Section 3-4

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
?ICMCE%MULATIVE Timer —11\1(087) TTIM(087) operates an incrementing timer with units of 0.1-s. The O“tpl_‘t
™ input N setting range for the set value (SV) is 0 t0 999.9 s. Required
087 S
BCD ON
() Reset Timer input off
input
N: Timer number Timer PV
S: Set value
[Timing resumes.
TTIMX Timer —
555 |input TTIMX(555) |~ PV maintained.
(Binary) N
(CS1-H, CJ1-H, .
CJIM, orCS1D | | S Completion O
only) | Reset Flag
input
) ON
N: Timer number Resetinput oFF
S: Set value
LONG TIMER — TIML(542) TIML(542) operates a decrementing timer with units of 0.1-s that can O“tp"_'t
TIML time up to 9999999.9 S (approx. 115 days). Required
(&) D1 o |
D2 Timer input OFF
S 1 1
Timer PV
D1: Completion
Flag
D2: PV word 0 i i i
S: SV word ' ! !
Completion Flag ON i
TIMLX (Bit 00 of D1) OFF !
553 || TIMLX(553)
(Binary)
(CS1-H, CI1-H, b1
CJ1M, or CS1D D2
only)
S
D1: Completion
Flag
D2: PV word
S: SV word

81

Timer and Counter Instructions

Section 3-4

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
Il/IIL'\J/ILETFI{-OUTPUT ——] MTIM(543) MTIM(543) operates a 0.1-s incrementing timer with eight OUtpL_‘t
independent SVs and Completion Flags. The setting range for the set Required
MTIM D1 value (SV) is 010 999.9 s. _
543 Timer PV
(BCD) D2 D2 | |
S .
Timer SVs —I D1 bits
D1: Completion s e 0
Flags S+1 . 1
D2: PV word
S:1st SV word S+2 — 2
MTIMX to to
554 || MTIMX(554) S+7 7
(Binary)
(CS1-H, CI1-H, b1
CJlM, or CS1D D2 Timer input
only)
S
D1: Completion
Flags
D2: PV word ;
S: 1st SV word Timer PV (D2)
Completion
flags (D1)
COUNTER Count{ cNT | |CNT operates a decrementing counter. The setting range for the set Output
CNT | input value (SV) is 0 to 9,999. Required
(BCD) N _ ON
Count input B
S OFF L
Reset — | N
input ON ! i ! E !
N: Counter Resetinput opp N S
number A
S: Set value Counter PV SV oo
CNTX L
Count—CNTX(546
546 |input (546) 0
(Binary) N ON
(CS1-H, CJ1-H, S Completion
CJ1M, or CS1D Flag OFF
only) |Reset —
input
N: Counter
number
S: Set value

82

Timer and Counter Instructions

Section 3-4

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

REVERSIBLE
COUNTER

CNTR

012
(BCD)

CNTRX

548

(Binary)
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)

Incre-—|
ment CNTR(012

input f N
Decre-J S
ment
input
Reset
input

N: Counter
number
S: Set value

Incre- —

ment CNTRX(548)

input N
Decre--l- S

ment

input

Reset
input

N: Counter
number
S: Set value

CNTR(012) operates a reversible counter.

Increment input

Decrement input

|

Counter PV

Counter PV

Completion Flag

Counter PV

Completion Flag OFF

Output
Required

RESET TIMER/
COUNTER

CNR

@CNR

545

(BCD)

CNRX

@CNRX

547

(Binary)
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)

CNR(545)
N1
N2

N;: 1st number in
range

N,: Last number
in range

CNRX(547)
N1
N2

N1: 1st number in
range

N,: Last number
in range

Resets the timers or counters within the specified range of timer or counter
numbers. Sets the set value (SV) to the maximum of 9999.

Output
Required

83

Comparison Instructions

Section 3-5

3-5 Comparison Instructions

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
Symbol Compari- s
:) L | Symbol comparison instructions (unsigned) compare two values
son (Unsigned) Symbol & options | | (constants and/or the contents of specified words) in 16-bit binary LD: Not
LD, AND, OR + =, Sy data and create an ON execution condition when the comparison required
<3< <E >, 3= condition is true. There are three types of symbol comparison AND, OR:
300 (=) Sy instructions, LD (LOAD), AND, and OR. Required
305 (<>) N g o
310 (<) . ; LD execution condition when
315 (<=) | 51, Comparison /~_ comparison result is true. _
320 (f) S,: Comparison < — I
325(>3) | gata 2 ' !
S1 ! |
82 ' i
ON execution condition
AND when comparison result
is true.
H T T
| | &1 | |
| | s | |
OR
_: __________ 1 CTT Tttt TS T T T T T e T m T T 5_
<
S1 \ . .
ON execution condition when
s2 comparison result is true.
Symbol Compari- | S;: Comparison Symbol comparison instructions (double-word, unsigned) compare two values
son (Double- data 1 (constants and/or the contents of specified double-word data) in unsigned 32-bit | | D: Not
word, unsigned) |g_. Comparison binary data and create an ON execution condition when the comparison condi- | required
LD, AND, OR + =, dazlia 5 tion is true. There are three types of symbol comparison instructions, LD AND, OR:
<>, <, <=, >, >= + (LOAD), AND, and OR. Required
L
301 (=)
306 (<>)
311 (<)
316 (<=)
321 (>)
326 (>=)
Symbol Compari- | S;: Comparison Symbol comparison instructions (signed) compare two values (constants and/or
son (Signed) data 1 the contents of specified words) in signed 16-bit binary (4-digit hexadecimal) LD: Not
LD, AND, OR + =, | S,: Comparison and create an ON execution condition when the comparison condition is true. required
<> <, <=, >, >= dsia 5 There are three types of symbol comparison instructions, LD (LOAD), AND, and | AND, OR:
+S OR. Required
302 (=)
307 (<>)
312 (<)
317 (<=)
322 (>)
327 (>=)

Comparison Instructions Section 3-5
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
Symbol Compari- | S;: Comparison Symbol comparison instructions (double-word, signed) compare two values
son (Double- data 1 (constants and/or the contents of specified double-word data) in signed 32-bit LD: Not
word, signed) S,: Comparison binary (8-digit hexadecimal) and create an ON execution condition when the required
LD, AND, OR + =, | 4ata 2 comparison condition is true. There are three types of symbol comparison AND, OR:
> < <=, >, >= | 031 instructions, LD (LOAD), AND, and OR. Required
+SL
303 (=)
308 (<>)
313 (<)
318 (<=)
323 ()
328 (>=)
gA\lsIIEGNED COM-|___ | CMP(02 Compares two unsigned binary values (constants and/or the contents O“tp"_'t
(020) of specified words) and outputs the result to the Arithmetic Flags in Required
CMP S the Auxiliary Area.
ICMP 1
020 S, Unsigned binary
comparison
81 : COmparison
datat L
2. Lomparison Arithmetic Flags
data 2 (>, >=, =, <=, <, <>)
DOUBLE ; ; Output
Compares two double unsigned binary values (constants and/or the ’
gA“sEGNED COM- CMPL(060) contents of specified words) and outputs the result to the Arithmetic Required
S, Flags in the Auxiliary Area.
CMPL
060 S, Unsigned binary
comparison
S,: Comparison st | |_st se || s2 |
data 1 L
S,: Comparison : ;
Arithmetic Flags
data 2 (>, >=, =, <=, <, <>)
SIGNED BINARY ; ; Output
J— Compares two signed binary values (constants and/or the contents of .
COMPARE cPsi4) specified words) and outputs the result to the Arithmetic Flags in the Required
CPS S4 Auxiliary Area.
ICPS
114 S, Signed binary
comparison
-81 <—>-S2
S,: Comparison -
data 1))
S,: Comparison Arithmetic Flags
data 2 (>, >= = <= <,<>)
DOUBLE ; ; Output
—— cPSL(115 Compares two double signed binary values (constants and/or the !
ggﬂEADR?E'NARY (113) contents of specified words) and outputs the result to the Arithmetic Required
S, Flags in the Auxiliary Area.
CPSL
115 S, Signed binary
comparison
S4: Comparison sttt | [st s+ || s2 |
data 1
S,: Comparison
data 2 Arithmetic Flags
(>,>=, = <=, <, <)
MULTIPLE ; ; ; Output
J— Compares 16 consecutive words with another 16 consecutive words
MCMP(01 .
COMPARE MCMP CMP(019) and turns ON the corresponding bit in the result word where the Required
contents of the words are not equal.
@MCMP St w notequ
019 S, Comparison R
R $1 — %2 — |_|9 0:Words
— — are equal.
S1+1 S2+1 L 1 1: Words
S4: 1st word of aren't
set1 : equal.
S,: 1st word of : |- |
set 2 S1+14 $2+14 14
R: Result word]
S1+15 ~— 82+15 — 15

85

Comparison Instructions

Section 3-5

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
TABLE - Output
— Compares the source data to the contents of 16 consecutive words
TCMP(085 .
COMPARE (089) and turns ON the corresponding bit in the result word when the Required
@_IT_EME s contents of the words are equal.
085 T Comparison R
1: Data are
S T — 0
R I:l — equaL
T+1 <— | |1 O0:Dataaren't
S: Source data : equal.
T: 1st word of :
table - |
R: Resulit word T+14 — 14
T+15 — 15
UNSIGNED S Compares the source data to 16 ranges (defined by 16 lower limits O"'tp"_'t
BLOCK BCMP(068)
and 16 upper limits) and turns ON the corresponding bit in the result Required
COMPARE A
BCMP S word when the source data is within the range.
@BCMP T Ranges 1:In ra.nge
068 R ——, 0:Notinrange
Lower limit Upper limit R
S: Source data - to T+1 [lo
T: 1st word of . T —
tF?b I|§esult word Source data : T+2 o T+3 mh
v T+28 to T+29 — || 14
-= T+30 to T+31 — 15
EXPANDED Compares the source data to up to 256 ranges (defined by upper and lower limits) | Output
p p 9 y upp p
ElﬂggK COM- BCMP2(502) | and turns ON the corresponding bit in the result word when the source data is | Required12
BOMP2 s within a range. 7
@BCMP2 T 1: In range
502 T n=255 max. 0: Not in range
(CJIM only) R D i
s s d > T+1|Range 0A[Range 0B T+2 -+ 0
: Source data ;
T: 1st word of Source data i* T+3|Range 1A[Range 1 B| T+4 -~ 1
block s ; ‘ ‘
R: Result word :
: i i D+15 max.
L T+2N+1 Range N A|Range N B| T+2N+2 »I:‘

Note: A can be less than
or equal to B or
greater the B.

86

Comparison Instructions Section 3-5
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
AREA RANGE Compares the 16-bit unsigned binary value in CD (word contents or constant) to | Output
COMPARE ZCP(088) | | the range defined by LL and UL and outputs the results to the Arithmetic Flags in | Required
(CS1-H, CJ1-H, cD the Auxiliary Area.
CJ1M, or CS1D
only) LL
ZCP
@ZCP UL
088
CD: Compare

data (1 word)

LL: Lower limit of
range

UL: Upper limit of
range

DOUBLE AREA
RANGE COM-
PARE
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)
ZCPL
@ZCPL
116

——ZCPL(116)
CD
LL
uL

CD: Compare
data (2 words)
LL: Lower limit of
range

UL: Upper limit of
range

Compares the 32-bit unsigned binary value in CD and CD+1 (word contents or | Output
constant) to the range defined by LL and UL and outputs the results to the Arith- | Required

metic Flags in the Auxiliary Area.

87

Data Movement | nstructions

Section 3-6

3-6 Data Movement Instructions

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
MOVE oy |—] Moviezn) Transfers a word of data to the specified word. CR);I;F:J'}I:ed
@mov S Source word
IMOV e 1
@MOV D I I
021 o o
S: Source L
D: Destination | Bit status
not changed.
v
Destination word
DOUBLE MOVE i Output
— Transfers t ds of data to th fied words.
@mgg:: MOVL(498) ransfers two wor sho ata to the specifie h\)/rv10r S 1 Required
198 S LT T LT
Db | | @ ——_——m—m—————————
Bit status
S: 1st source not changed.
word
D: 1r§t destination 5 Do
wo
LT T
MOVE NOT MYN | =1 MVN(022) Transfers the complement of a word of data to the specified word. gzt?:ifed
@MVN Source word d
022 S r-_--__-.__--_--__-]
D I I
S: Source L____T__ _____ -
D: Destination | Bit status
inverted.
v
Destination word
DOUBLE MOVE . Output
NOT " —— MVNL(499) Transfers the complerr;ent of two words of da;a;to the specified words. Required
@MVNL S IIIIIIIIIIIIIIIIIIIIIIIIIIIII]
499 o | | -/ = I~ =
S: 1st source Bit status
word inverted.
D: 1st destination D D
word LT T LT
MOVE BIT s . Output
— Transfers th fied bit.
@M8¥E MOVB(082) ransfers the specified bi o] - |] Required
S o ~ AN v
082 I
C
D s|
S: Source word or
data
C: Control word D |
D: Destination
word

88

Data Movement | nstructions

Section 3-6

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

MOVE DIGIT

MOVD
@MOVD

083

——{MOVD(083)
S
(o3
D

S: Source word or
data

C: Control word
D: Destination
word

Transfers the specified digit or digits. (Each digit is made up of 4 bits.)

151211 87 43 0
¢l o 1 T n T m |

J

s|

Output
Required

MULTIPLE BIT
TRANSFER

XFRB
@XFRB

062

—1 XFRB(062)
C
S
D

C: Control word
S: 1st source
word

D: 1st destination
word

43 0

Output
Required

BLOCK
TRANSFER

XFER
@XFER

070

— XFER(070)
N
S
D

N: Number of
words

S: 1st source
word

D: 1st destination
word

Transfers the specified number of consecutive words.
s D

N words ~
to to

D+(N-1)

S+(N-1)

Output
Required

BLOCK SET

BSET
@BSET

071

BSET(071)
S
St
E

S: Source word
St: Starting word
E: End word

Copies the same word to a range of consecutive words.
Source word Destination words

L J—s=

— E

Output
Required

DATA
EXCHANGE

XCHG
@XCHG

073

——{ XCHG(073)
E1
E2

E1:1st exchange
word

E2: Second
exchange word

Exchanges the contents of the two specified words.

E1 E2
[1] ———="[[1]]

Output
Required

89

Data Movement | nstructions Section 3-6
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DOUBLE DATA ; ; ; Output
JE— Exchanges the contents of a pair of consecutive words with another .
EXCHANGEXCGL XCGL(562) pair of consecutive words. Required
E1
@xc;g; - E1 E1+1 E2 E2+1
| e[[[[]]
E1: 1st exchange
word
E2: Second
exchange word
SINGLE WORD P ; Output
JE— Transfers the source word to a destination word calculated by adding ’
D|STR|BUTEDIST DIST(080) an offset value to the base address. Required
@DIST S B 0 n
080 Bs S Of .
of i
Mo i
S: Source word
Bs: Destination
base address
Of: Offset
Bs+n
DATA COLLECT | | COLL(081) Transfers the source word (calculated by adding an offset value to the O“tpl_‘t
COLL base address) to the destination word. Required
@COLL Bs o
D N
Bs: Source base Bs+ R
address
Of: Offset
D: Destination
word
MOVE TO e . Output
— Sets the PC memory address of the specified word, bit, or .
REGISTER MOVR(560) timer/counter Completion Flag in the specified Index Register. (Use Required
MOVR s MOVRW(561) to set the PC memory address of a timer/counter PV in
@MOVR S an Index Register.)
560 I/O memory address of S
S: Source s [5
(desired word or R REEEEN
bit)
D: Destination
(Index Register)
Index Register
D
MOVE TIMER/ s :) : Output
— Sets the PC memory address of the specified timer or counter's PV in -
SSLGJII\gI.EE%PV TO MOVRW(S61) the specified Index Register. (Use MOVR(560) to set the PC memory Required
S address of a word, bit, or timer/counter Completion Flag in an Index
@mg&gw S Register.)
561 s's I/O memory address of S
: Source
(desired TC s [i
number)

D: Destination
(Index Register)

Timer/counter PV only

Index Register
D

90

Data Shift I nstructions

Section 3-7

3-7 Data Shift Instructions

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
SHIFT REGISTER | pata Operates a shift register. Output
SFT input = SFT(010) F‘) E 9 | | Stal, Stz B St \ Required
010 oot —__st LTI O LT TP LA T T
Reset—| E / ‘JUUUU‘JUUUU‘JU‘JUUUUUU‘JU‘JUU‘J‘JUUU‘JUUUUUUU‘JU‘JUU‘J‘JUUU\\
input Lost Status of data
) . input for each
St: Starting word shift input
E: End word
REVERSIBLE ; ; ; ; ; Output
SHIFT REGISTER |— sFTR(084) Creates a shift register that shifts data to either the right or :r;i:ifzt. Required
SFTR c c
@SFTR
084 St B o L
Y15 E Q15 e 0 15 St gDatainput
E O [[] [T------ee-s []----- [T---------- []
g'hiﬂ
C: Control word ™ o Y o Jirec-
StStartlng word _Data H __________] [|0| _____ 1 ___j?_t____lol C|:]Y tion
E: End word input
ﬁg\l(JI\éCSHHRIST- Shifts all non-zero word data within the specified word range either Ompl_‘t
ASFT(017) towards St or toward E, replacing 0000Hex word data. Required
REGISTER 15 14 13 12
ASFT c N I
@ASFT St
017 E
St Shift direction
c:.c 0 0 0 O . .
: Control word)Shn‘t Shift enabled
St: Starting word
E: End word Clear
0 0 0 O
) shit
E
St
Non-zero data
0
Zero data
E|O0 O 0 O
WORD SHIFT ; ; ; Output
— Shifts data between St and E in word units.
WSFT WSFT(016) — Required
@WSFT E S/ e
016 S ST Vary” 5 B A
Lost [[——— [| [T [
St
E
S: Source word
St: Starting word
E: End word
ARITHMETIC ; : Output
SHIFT LEFT — ASL(025) Shifts the conter:;s of Wd one bit to the left. . Required
ASL
W
@nsL d INEERNENNRRENEER
025 | wd: Word oy /5/ A L0

91

Data Shift Instructions Section 3-7
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DOUBLE SHIFT ; ; Output
LEFT — asLLs70) Shifts the contents of Wd and Wd +1 one bit to the left. Required
ASLL wd Wd+1 wd
e EEENNNNNNEENNNNN]ARRNNNNNNNNNAREN
570 | wd: Word !
cy, 15/4 1%)/5/ 1%);"'0
L1 (1] L [1]
ARITHMETIC . . ; Output
SHIET RIGHT — AsR(o26) Shifts the contents of Wd one bit to the right. Required
ASR 15 0
Wd
@AsR EENEEEENENEREREN
Wd: Word 0 \ \\
N al
DOUBLE SHIFT . . : Output
RIGHT — ASRL(571) Shifts the contents of Wd and Wd +1 one bit to the right. Required
@ASRL 15 10 15 10
571 | \Wd: Word 0_!II|||||||||||||||||||||||||||||||
y5y4 o\ 15{4 0\CY
L1 [L1 [1]
ROTATE LEFT ; ; ; ; ; Output
— Shifts all Wd bits one bit to the left including the Carry Flag (CY).
ROL ROL(027) g y Flag (CY) Required
@ROL CY 1514 10
027 W e
Wd:Word o [| | |J|
DOUBLE ; ; ; ; ; Output
ROTATE LEFT — ROLL(572) (Sé’l\lz;s all Wd and Wd +1 bits one bit to the left including the Carry Flag Required
ROLL
Wd Wd+1 wd
@R?;; CY 1514 10 1514 10
Wd:Word [FW| [T7 [T | |J|
ROTATE LEFT . . . : . Output
WITHOUT — RLNC(574) Shifts all Wd bits one bit to the left not including the Carry Flag (CY). .
Required
CARRY
RLNC Wd CY 1514 Wd 10
@RLNC X
Wo:Word N N —— 1T
574 L J
DOUBLE : : : . : Output
ROTAg)E LEFT —{ RuNL(E78) Eg;ts(gy{;Nd and Wd +1 bits one bit to the left not including the Carry Required
WITHOUT :
CARRY RLAL Wd CY 1514 Wd+1 0 1514 Wd 10
@RLNL |Wd: Word D’|L| [[[T | |J|
576
ROTATERIGHT | | m— Shifts all Wd bits one bit to the right including the Carry Flag (CY). Output
ROR wd Required
@ROR wd 1514 Wa+1 0 1514 0 cY
028 LL] [] L] [
Wd: Word [
DOUBLE ; ; ; Rt ; Output
ROTATE RIGHT |——] RORL(573) Elr;lgs(g{l(;Nd and Wd +1 bits one bit to the right including the Carry Required
RORL
wd
@RORL 1514 Wa+1 0 _ 1514 Wd 0 CY
573 |Wd: Word |[| | [] L] [

92

Data Shift Instructions Section 3-7
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
ROTATE RIGHT ; ; ; : ; : Output
— Shifts all Wd bits one bit to the right not including the Carry Flag (CY). ’
\(’:VATRHRC\)(UT RRNC(575) The contents of the rightmost bit of Wd shifts to the leftmost bit and to Required
RRNC wd the Carry Flag (CY).
@RRNC 15 14 10 CY
575 Wd: Word PV P ‘tl
wa ||] | |J |
DOUBLE ; ; ; - ; : Output
— Shifts all Wd and Wd +1 bits one bit to the right not including the Carry .
ROTATE RIGHT RRNL(S77) Flag (CY). The contents of the rightmost bit of Wd +1 is shifted to the Required
CARRY Wd leftmost bit of Wd, and to the Carry Flag (CY).
RN Wa:word ga W o wa o
S |L||| [T ||J|E
ONE DIGIT SHIFT : P . Output
LEET — SLD(074) Shifts data by onz digit (4 bits) to the left. N Required
@ st /?mal—‘- [OHex]
074 E Lost ——
St: Starting word
E: End word
ONEDIGIT SHIFT : P . ! Output
RIGHT — SRD(075) Shifts data by oneEdlglt (4 bits) to the right. t Required
SRD St ANV\/W NN
@SOF;Z E] e Lost
St: Starting word
E: End word
SHIFT N-BIT . o . Output
DATA LEFT — NSFL(578) Shifts the specified number of bits to the left. Required
NSFL b o 0]
@NSFL
578 Cc
N n
D|] 1]
D: Beginnin Shifts one bit to the left
C: Beginning bit cY) / 0
N: Shift data [] o o] |
length
-
N-1 bit
SHIFT N-BIT ; i ; i Output
DATA RIGHT — NSFR(579) Shifts the specified number of bits to thg I‘I?ht. Required
NSFR D
@NSFR
579 C
N D| |
D: Beginning Shifts one bit to the right
word for shift 0 : oy
C: Beginning bit o | D
N: Shift data
length

93

Data Shift Instructions Section 3-7
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
SHIFT N-BITS . o . - Output
— Shifts the specified 16 bits of word data to the left by the specified
LEFT NASL(580) number of gfs Y be Required
NASL D
@NASL 15 12 11 87 43 0
580 c c| P o0 | i |
-
D: Shift word . .
C: Control word Shift n-bits
a
f Contents of "a" or "0"
shifted in
[[]]
N bits
DOUBLE SHIFT . i . - Output
N-BITS LEFT NSLL(582) Eﬂgs b;r:% ?gttzsmﬂed 32 bits of word data to the left by the specified Required
NSLL D)
@NSLL C?s 12.”0 87 43 (l)
582 c : —
hift n—bi
D: Shift word D+1 DS fftn bgs
C: Control word Contents of
"2 or 0"
8/l shifted in
ZHNEN
N bits
SHIFT N-BITS ; i ; : I Output
S— Shifts the specified 16 bits of word data to the right by the specified
RIGHT NASR(581) number of t‘))its. gney P Required
NASR D
@NASR
581 C
Contents of "a" or
D: Shift word 0" shifted in
C: Control word
DOUBLE SHIFT ; i ; ; i Output
— Shifts the specified 32 bits of word data to the right by the specified
N-BITS RIGHT NSRL(583) number of bits, 1512 11 gs 7 Y 43 pg Required
NSRL D cC—To 7 7T]
@NSRL —_—
583 C Shift n—bits
a D+1 D
D: Shift word
C: Control word Contents of
a'or’0’ " \a
shitedin [T

94

I ncrement/Decrement I nstructions Section 3-8
3-8 Increment/Decrement Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
INCREMENT _diai ; prs Output
BINARY — ++(590) Increments the 4-digit hexadecimal content of the specified word by 1. Required
» - .
@++
590 |wd: Word
DOUBLE INCRE- i ; pps Output
MENT BINARY —— ++1(591) Increments the 8-digit hexadecimal content of the specified words by 1. Required
@:1'[Wd Wd+1 wd +1 Wd+1 Wd
591 \wd: Word
DECREMENT i ' & Output
BINARY — ——592) Decrements the 4-digit hexadecimal content of the specified word by 1. Required
@-- wd 8
592 \wd: Word
DOUBLE DEC- . : . Output
REMENT — ——L(593) Decrements the 8-digit hexadecimal content of the specified words by 1. Required
BINARY wd
ot | wa+1 wd | -1 —— wad+i wd
593 Wd: 1st word
INCREMENT iy . Output
BCD —— ++B(594) Increments the 4-digit BCD content of the specified word by 1. Required
++B
o8| [wa .
594 \wd: Word
DOUBLE INCRE- T . Output
MENT BCD — ++BL(595) Increments the 8-digit BCD content of the specified words by 1. Required
++BL Wd
@++BL | wds wd | 1 —— wd+1 wd
595 |wd: 1st word
DECREMENT _ Decrements the 4-digit BCD content of the specified word by 1. Output
BCD — —B(596) 9 pe y Required
--B
@--B L [wa]
596 | wd: Word
DOUBLE DEC- L e Output
REMENT BCD — - —BL(597) Decrements the 8-digit BCD content of the specified words by 1. Required
—-BL wd
@--BL Wd+1 Wd -1 /| Wd+1 Wd
597 |wd: 1st word

95

Symbol Math Instructions Section 3-9
3-9 Symbol Math Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
illg;gsv?TilgG$Y — +(400) Adds 4-digit (single-word) hexadecimal data and/or constants. CR)“tp"_'t J
equire
CARRY . .
+ Au (Signed binary)
+ . .
wo| 2 , (Sgned binary
R
CY will turn
Au: Augend word ONwhenthere [cy || R | (Signed binary)
Ad: Addend word Isacarry.
R: Result word
DOUBLE i ~ ; Output
SIGNED BINARY |— +L(401) Adds 8-digit (double-word) hexadecimal data and/or constants. Required
éRER)I%I(ITHOUT Au | Au+1 | | Au | (Signed binary)
+L . .
@+L Ad + Ladt | [ad | (Signedbinary)
401 R CY will turn
Au: 1st augend ONwhen | oy || Ry || R | (Signedbinary)
word there is a
Ad: 1st addend carry.
word
R: 1st result word
SIGNEDBINARY | Adds 4-digit (single-word) hexadecimal data and/or constants with the g;‘;%‘i‘:ed
CARRY arry Flag (CY).
+C Au (Signed binary)
@+C Ad . .
402 = (Signed binary)
Au: Augend word +
édﬁAddﬁ"d word CY will turn
- Result word ONwhenthere | cy | [R | (Signed binary)
is a carry.
DOUBLE L : : Output
SIGNED BINARY |—+CL(403) ég?rs SﬁgglEc(:c\i(c;t.Jble-word) hexadecimal data and/or constants with the Reqrijired
ADD WITH yrag _ ,
CARRY Au [Aausr || Au | (Signedbinary)
+CL Ad
@+CL - [Ad+1 | | Aad | (Signed binary)
403
CY
Au: 1st augend *
word CY will turn
Adic}St addend ONwhenthere [cy | [Ryt | | R | (Signed binary)
wort is a carry.
R: 1st result word Y
BCD ADD +B(404) Adds 4-digit (single-word) BCD data and/or constants. Output
WITHOUT Required
v oD
+B
o5 [Ao . eco)
R
CY will turn
Au: Augend word ON when there Lev|_RrR __|@®CD)
Ad: Addend word is a carry.
R: Result word

96

Symbol Math Instructions Section 3-9
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DOUBLE BCD e i Output
ADD WITHOUT |~ +BL(405) Adds 8-digit (double-word) BCD data and/or constants. Required
CARRY L " [A+t | [Aau | (BCD)
@+BL Ad BCD
o . LAt | [ad | (BOD)
R
Au: 1st augend word CY will turn cy R R BCD
Ad: 1st addend word ON when there L CY | [Re1] | | ©co)
R: 1st result word Is a carry.
BCD ADD WITH S e ; Output
J— Adds 4-digit (single-word) BCD data and/or constants with the Carry Fla
CARRY +BC(406) cy) 9 (sing) Y79 Required
+BC
@+8C Au (BCD)
406 Ad
. oo
Au: Augend word) *
Ad: Addend word 8L WI}[: turtr;]
R: Result word when there
is a carry. | cY | | R | (BCD)
DOUBLE BCD e } . Output
ADD WITH —1+BCL(407) ,(Agg)s 8-digit (double-word) BCD data and/or constants with the Carry Flag Required
CARRY ’
+BCL Au [ausr || aAu | (BCD)
@+BCL Ad
407 = [Acs1 || aAd | (BCD)
s
Au: 1st augend word CY will t
Ad: 1st addend word SN wh Ur{;] .
R: 1st result word o2 carmy 0T [cy]| rRetn || mrR | BCD)
SIGNED BINARY s g : Output
SUBTRACT —1 -(410) Subtracts 4-digit (single-word) hexadecimal data and/or constants. Required
WITHOUT . ; i i
CARRY Mi (Signed binary)
@- Su _ (Signed binary)
410 R
Mi: Minuend word C wil turn ON [cy|[R | (Signedbinary)
Su: Subtrahend borrow.
word)
R: Result word
DOUBLE e ’ : Output
SIGNED BINARY —L(411) Subtracts 8-digit (double-word) hexadecimal data and/or constants. Required
SUBTRACT R . .
WITHOUT Mi [M1][m | (signedbinary)
CARRY Su
-L - | Su+1 | | Su | (Signed binary)
@-L R
411 CY will turn . f
Mi: Minuend word ON when | cyY | | R+1 | | R | (Signed binary)
Su: Subtrahend there is a
word borrow.
R: Result word
g{JGBNTERI?AE%NARY — -c(412) Subtracts 4-digit (single-word) hexadecimal data and/or constants with the gutpgt q
Carry Flag (CY). - . . equire
WITH CARRY . Signed bina
| Cw (Soned siary
@-C Su (Signed binary)
412
R -
Mi: Minuend word CY wil turn
Sulz";Subtrahend ON when there | cY | | = | (Signed binary)
wo is a borrow.
R: Result word

97

Symbol Math Instructions

Section 3-9

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DOUBLE - : . Output
SIGNED BINARY |—]-CL(413) Subtracts 8-digit (double-word) hexadecimal data and/or constants with Required
WITH CARRY Mi the Carry Flag (CY)
ot s [mi+1 | | m | (Signed binary)
413 R | Su+1 | | Su | (Signed binary)
Mi: Minuend word _
Su: Subtrahend CY will turn -
word ON when
R: Result word tereisa [cy || R | [R | (Signedbinary)
borrow.
\?V(I:TDHSC’)%%TRACT —{ B(414) Subtracts 4-digit (single-word) BCD data and/or constants. g(';';p"_':ed
ul
(8cD)
-B
ee| [o : o)
R
CY will turn
Mi: Minuend word ONwhenthere | CY [R |(BCD)
Su: Subtrahend is a carry.
word
R: Result word
gSéJ_I?}IQ_AECBTCD —-BL(415) Subtracts 8-digit (double-word) BCD data and/or constants. CR);ItFi:il:ed
WITHOUT - g
CARRY Mi [mi+1 | [wm | &cD
-BL Su
@-BL [sur1 || su | BCD)
415 R
- ; CY will turn
Mi: 1t minuend S e Loy [Rt | [R | (BCD)
Su: 1st is a borrow.
subtrahend word
R: 1st result word
BCD SUBTRACT |___ _5C(416) Eggr(aé;\t(s) 4-digi (single-word) BCD data and/or constants with the Carry SZ;T::e g
-BC .
@-8C Mi [wm] eco
416 Su
= (8CD)
- CY
Mi: Minuend word -
Su: Subtrahend Y will turn
ord
V|:\;/; Result word ONwhenthere LCY | [R | (BCD)
is a borrow.
gSILBJITBIIQ_ECBTCD —{“BeL@17) Egbtr(%(::\t(s) 8-digit (double-word) BCD data and/or constants with the Carry gg;?:il:ed
WITH CARRY - 9 (&1
_BCL Mi [mi+1+ || ™ | BCD)
@-BCL Su
417 = [suvi || su | (BCD)
- CcY
Mi: 1st minuend
vsvord CY will t
u: 1st will turn
subtrahend word ON when there Loy [ret [[R | BEOD)
R: 1st result word is a borrow.

98

Symbol Math Instructions Section 3-9
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
SIGNED BINARY T . Output
MULTIPLY —1 *(420) Multiplies 4-digit signed hexadecimal data and/or constants. Required
o Md (Signed binary)
R
Md: Multiplicand) .
word R +1 | R | (Signed binary)
Mr: Multiplier
word
R: Result word
g%UNI?EII_DEBINARY — L) Multiplies 8-digit signed hexadecimal data and/or constants. CR);I;F:.:}I:ed
MULTIPLY
L Md Md + 1 Md (Signed binary)
@L Mr
421 R X Mr + 1 Mr (Signed binary)
Md: 1st
multiplicand word Signed binar
Mr: 1st multiplier R+3 R+2 R+1 R (5ig Y)
word
R: 1st result word
UNSIGNED . e . . Output
BINARY — *U(422) Multiplies 4-digit unsigned hexadecimal data and/or constants. Required
MULTIPLY
U Md (Unsigned binary)
@y Mr
422 R X (Unsigned binary)
Md: Multiplicand))
word | R +1 | R | (Unsigned binary)
Mr: Multiplier
word
R: Result word
DOUBLE . i ; ; Output
UNSIGNED —*UL(423) Multiplies 8-digit unsigned hexadecimal data and/or constants. Required
BINARY
MULTIPLY Md Md + 1 Md (Unsigned binary)
*UL Mr
@*UL <) .
423 R Mr + 1 Mr (Unsigned binary)
Md: 1st
multiplicand word
Mr: 1st multiplier R+3 R+2 R+1 R (Unsigned binary)
word
R: 1st result word
BCD MULTIPLY*B — Baza) Multiplies 4-digit (single-word) BCD data and/or constants. SZ;T::e g
@'s (8cD)
424 Md
Mr
* (8CD)
R
\I}vllgr:dMultlpllcand R +1 | R | (BCD)
Mr: Multiplier
word
R: Result word

99

Symbol Math Instructions Section 3-9
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DOUBLE BCD _ - Output
MULTIPLY — *BL(425) Multiplies 8-digit (double-word) BCD data and/or constants. Required
*
@bl Md Md + 1 Md | (BCD)
425 Mr
R x Mr + 1 Mr (BCD)
Md: 1st
ot atipter R+3 | R+2 | R+1 R | (BCD)
word
R: 1st result word
SIGNED BINARY o R : . Output
DIVIDE —1 /(430) Divides 4-digit (single-word) signed hexadecimal data and/or constants. Required
@; Dd (Signed binary)
430 Dr
Dd: Dividend
word R +1 | R | (Signed binary)
Dr: Divisor word])
R: Result word Remainder Quotient
DOUBLE i - ; ; Output
J— D - le- h | .
g'lsnljl? BINARY /L(431) ivides 8-digit (double-word) signed hexadecimal data and/or constants Required
L Dd Dd+1 Dd (Signed binary)
@IL Dr
431 R + Dr+1 Dr (Signed binary)
Dd: 1st dividend
word R+3 R+2 R+1 R Si i
Dr: 1st divisor (Signed binary)
word
R: 1st result word Remainder Quotient
g:\ll\lSAlg\’\(lEDIIDVIDE —1 /U(432) Divides 4-digit (single-word) unsigned hexadecimal data and/or constants. gz;?:ij:ed
J{V]
Dd
((%LZJ D (Unsigned binary)
r
R - (Unsigned binary)
Dd: Dividend
ord
Vll\)lr: Divisor word R +1 | R | (Unsigned binary)
R: Result word
Remainder Quotient
DOUBLE i ;i ; ; Output
— Divides 8-digit (double-word) unsigned hexadecimal data and/or p
UNSIGNED /UL(433) constante 9 () unsig Required
BINARY DIVIDE])
UL Dd Dd + 1 Dd | (Unsigned binary)
433 N , ,
R g Dr+1 Dr (Unsigned binary)
Dd: 1st dividend
word R R . .
Dr-: 1st divisor +3 +2 R+1 R (Unsigned binary)
word))
R: 1st result word Remainder Quotient

100

Conversion Instructions Section 3-10
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
BCD DIVIDE o PR Output
S D 4- le- BCD .
B /B(434) ivides 4-digit (single-word) BCD data and/or constants Required
als Dd (8CD)
434
Dr
- (BCD)
vIZ\)Ig'ilewdend R +1 | R | (BCD)
grREg‘s"Sﬁ'\'N‘g?éd Remainder Quotient
DOUBLE BCD i P Output
— Divides 8-digit (double-word) BCD data and/or constants.
DIVIDE /BL(435) git () Required
@Bt Dd Dd +1 pd | (BCD)
435 Dr
R + Dr+1 Dr (BCD)
Dd: 1st dividend
word | divisor R+3 R+2 R+1 R (BCD)
word) .
R: 1st result word Remainder Quotient
3-10 Conversion Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
BCD-TO-BINARY ; Output
BIN |— BIN(023) Converts BCD data to binary data. Required
@5'2';‘ S s| (BcDp) —Rr[@N
R
S: Source word
R: Result word
‘I?CC))LIJD%LUEB?ED — BINL(058) Converts 8-digit BCD data to 8-digit hexadecimal (32-bit binary) data. SZ;FS::ed
BINARY S
BINL s (BCD) _. R (BIN)
@Bcl)lglé R S+1 (BCD) R+1 (BIN)
S: 1st source
word
R: 1st result word
BINARY-TO-BBCC% —BcD(022) Converts a word of binary data to a word of BCD data. SZ:R::ed
@BOCZ'Z S s (BIN) —R (BCD)
R
S: Source word
R: Result word
DOUBLE i : it i i Output
BINARY-TO- — BCDL(059) Converts 8-digit hexadecimal (32-bit binary) data to 8-digit BCD data. Required
DOUBLE BCD S
BCDL S (BIN) __ R (BCD)
@BCDL R S+1 (BIN) R+1 (BCD)
059
S: 1st source
word
R: 1st result word

101

Conversion I nstructions

Section 3-10
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
2'S COMPLE- ' ; Output
MENT —NEG(160) Calculates the 2's complement of a word of hexadecimal data. Required
NEG S 2's complement
@NEG (Complement + 1)
S: Source word
R: Result word
DOUBLE 2'S ' : Output
COMPLEMENT |~ |NEGL(161) Calculates the 2's complement of two words of hexadecimal data. Required
NEGL S 2's complement
@NEGL (Complement + 1)
161 R (S+1,9) (R+1, R)
S: 1st source
word
R: 1st result word
16-BIT TO 32-BIT _hit a f ; _hi ; Output
SIGNED BINARY |—1 siGN(600) Expands a 16-bit signed binary value to its 32-bit equivalent. Required
SIGN
@SIGN S '\"'S‘B
600 R S
—1- MSB = 0:
S: Source word MSB = 1:
R: 1st result word FFFF Hex 0000 Hex
D+1 D
D = Contents of S

102

Conversion Instructions Section 3-10
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DATA DECODER | | Reads the numerical value in the specified digit (or byte) in the source word, Output
MLPX MLPX(076) | |turns ON the corresponding bit in the result word (or 16-word range), and Required
@MLPX s turns OFF all other bits in the result word (or 16-word range).
076 4-to-16 bit conve rsion
C
R c| 0 | | | i n |
S: Source word /=1 (Convert 2 digits.) ‘
C: Control word)
R: 1st result word n
s| p | | : | n=2 (Start with second digit.)
4-to-16 bit decoding
(Bit m of R is turned ON.)
15 p m 0
R i
Re1 L —1
8-to-256 bit conve rsion
c| 1 | | i n |

/=1 (Convert 2 bytes.) |

| ;

n=1 (Start with first byte.)
s] m i P |
—
8-t0-256 bit decoding
5 (BtmofR to R+1E(>) is turned ON.)
31 m 16
R+1 | —1]
i 239 224
R+14|255 240
R+15
R+16. :
R17 L ;
;L Two 16-word ranges
are used when /

specifies 2 bytes.

103

Conversion Instructions Section 3-10
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DATA ENCODER Flnds the location of the first or last ON bit within the source word (or 16-word | QutPut
DMPX DMPX(077) | | range), and writes that value to the specified digit (or byte) in the resuit word. Required
@DMPX s 16-to-4 bit conversion
077 :
R cl o o | 1 i n]
FInds leftmost bit
C (Highest bit address)
| |
S: 1st source I15 p ,;_ 0 /=1 (Convert
word s B 2 words.)
R: Result word 81 A = }
C: Control word + i
16-to-4 bit decodi
-to- lecoding . : ;
(Location of left- Leftmost bit Rightmost bit
most bit (m) is writ-
tentoR.)
| n=2 (Start with digit 2.)
n
R—F m
256-to-8 bit conve rsion C| 0 1/0 | I | n
/=0 (Convert one 16-word range.)
15 0
s|31 16 | |
S+1 Leftmost bit Rightmost|bit
Plde om % 224
s+14loss—il 240
s+15
Finds leftmost bit
(Highest bit address)
256-to-8 bit decoding
(The location of the leftmost bit in the
16-word range (m) is written to R.)
II n=1 (Start with byte 1.)
R m
ASCIICONVERT || Converts 4-bit hexadecimal digits in the source word into their 8-bit ASCII Outpgt
ASC ASC(086) equivalents. Required
@ASC S DiL o | 1o | n | m |
086
Di First digilt to convert |
D ;
T m T
S: Source word sl 1 [2 | 3 | |
Di: Digit b T g
designator HEX
D: 1st destination Number of
word digits (n+1)
ASCII
Left (1) | Right (0)
D 33
31 32

104

Conversion I nstructions

Section 3-10

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
ASCITOHEX | | HEx(162) | |Converts up to 4 bytes of ASCII data in the source word to their hexadecimal Output
@HE§ equivalents and writes these digits in the specified destination word. Required
162 S C:0021
Di pil_ o o1 | n T m |
D First byte to convert
S: 1st source Left (1) Right (0)
word s 33 32
Di: Digit
designator S+1 34
D: Destination
word
ASCII Number of digits (n+1)
L First digit to write
HEX nt1 f
I m Al
D| 4 3 2
COLUMN TO ; . : Output
JE— Converts a column of bits from a 16-word range (the same bit number in 16 .
LINE LINE LINE(063) consecutive words) to the 16 bits of the destination word. Required
S
@LINE Bit N Bit
063 N 15 l 00
D S 0/0|O|1|1[1[1[0|0]|0O|1]0O|O[OfO]1
S- 1st source S+1 [1[1]/0]1]0]|0|1][0[Of1|1]1]0]|0|O]|1
word S+2 [0[/0|0|1]1]|O[1[1[{O0fOf1|O|O|1[1]|1
N: Bit number
word
s+15[0]1[1]ofo[o[o[1]1]ofa]o]1[0]1]0]
Bit Bit
Y 15 00
D[o] - - - [o[alaTx
bll\sllll\:_l TocoL- — coLm(oes4) | |Converts the 16 bits of the source word to a column of bits in a 16-word range Output
COLM of destination words (the same bit number in 16 consecutive words). Required
ecory > Bit Bit
i i
064 D 15 00
N
s [of1[1]1]
S: Source word
D: 1st destination
word *
N: Bit number .
Bit Bi Bit
15 ‘ 00
D 0({0[0]|0]1]1[{1[0]|0O|0O|1[0[0]|O|O]|1
D+1 [1]1]0]1]|0[Of1[0[Of1[1]|1][0]|0|O|1
D+2 |(0]0|0|1[1[Of1[1({0f0[1]|O[O]|1][1[1
1[{0f(0[0]|0]|O|1|1]O|O|O|O|O[1]1]|1

D+3

D+150/1[1[1[olo[o[1]1]o[0]o[1]0]1]0]

105

Conversion I nstructions

Section 3-10

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
SIGNED BCD- : ; : Output
TO-BINARY —— BINS(470) Converts one word of signed BCD data to one word of signed binary data. Required
BINS c
osIS o]
470 S Signed BCD format
D specified in C
C: Control word S|_Signed BCD | — D
S: Source word
D: Destination
word
DOUBLE ; ; : Output
SIGNED BCD- — BisLa72) Converts double signed BCD data to double signed binary data. Required
BISL c
@BISL S Signed BCD format
specified in C
472 D
S| SignedBCD | Dj Signed binary
C: Control word $+1| Signed BCD D+1| Signed binar
S: 1st source * g * 9 nary
word
D: 1st destination
word
SIGNED BINARY-| | Converts one word of signed binary data to one word of signed BCD data. Output
TO-BCD BCDS(471) Required
@BCDS
471 S Signed BCD format
D specified in C
$| Signed binary | — D| Signed BCD
C: Control word
S: Source word
D: Destination
word
DOUBLE ; ; ; Output
SIGNED BINARY- |— BDSL(473) Converts double signed binary data to double signed BCD data. Required
TO-BCD
@BDSL s
473 Signed BCD format
D specified in C
C: Control word S| Signed binary | _, D| Signed BCD
\/Své):'gt source S+1| Signed binary D+1| Signed BCD

D: 1st destination
word

106

Logic I nstructions Section 3-11
3-11 Logic Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
LOGICAL AND ; : N Output
— Takes the logical AND of corresponding bits in single words of word data
ANDW ANDW(034) | | and/or constgants. P 9 9 Required
@ANDW l4 li.l, - R
034 127
l2 Iy I R
R 1 1 1
l4: Input 1 1 0 0
I>: Input 2
R: Result word 0 1 0
0 0 0
DOUBLE LOGI- : : P Output
— Takes the logical AND of corresponding bits in double words of word data
CAL AND ANDL(610) and/or const%mts. P 9 Required
ANDL [
@ANDL 1 (I3.144+1). (I l9+1) - (R, R+1)
610 I
R |1,|1+1 |2, |2+1 R, R+1
1 1 1
l1: Input 1
I Input 2 1 0 0
R: Result word 0 1 0
0 0 0
LOGICAL OR : : - Output
[— Takes the logical OR of corresponding bits in single words of word data
ORW ORW(035) | | and/or constgants. P ? ’ Required
@ORW |1
035 I |1 + |2 - R
2 l4 I R
R 1 1 1
l4: Input 1 1 0 1
I>: Input 2
R: Result word 0 1 1
0 0 0
DOUBLE LOGI- : ; P Output
— Takes the logical OR of corresponding bits in double words of word data
CALOR ORWL(611) and/or constgants. P 9 Required
ORWL I
@ORWL 1 (I 14+1) + (1o, 1,+1) - (R, R+1)
611 l2 I+ | L+l | R R+1
R 1 1 1
I1: Input 1 1 0 1
I>: Input 2
R: Result word 0 1 1
0 0 0
EXCLUSIVE OR ; ; ; Hein ai Output
— Takes the logical exclusive OR of corresponding bits in single words of word ’
XORW XORW(036) data and/or constants. Required
@XORW h Iy lp +1.0p ~ R
036 1-l2 1412 -
l2 4 lo R
R 1 1 0
I4: Input 1 1 0 1
I>: Input 2
R: Resuit word 0 1 1
0 0 0

107

Logic I nstructions Section 3-11
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DOUBLE . : . e Output
JEN— Takes the logical exclusive OR of corresponding bits in double words of word
EXCLUSIVE OR XORLE12) | | 42ta andlor constants. ponaing Required
XORL R
@XORL l4 (I4.14+71). (Ia Io+1) + (I4. 14+1). (I 15+1) = (R, R+1)
612 l2 luly+1 | lalp+1 | R, R+1
R 1 1 0
l4: Input 1 1 0 1
I>: Input 2
R: Result word 0 1 1
0 0 0
EXCLUSIVE NOR : : : ; Output
— Takes the logical exclusive NOR of corresponding single words of word data .
@ﬁ“gw XNRW(OS7) | | and/or constants. Required
037 l4 li.l+1. T~ R
2 Iy lp R
R 1 1 1
I;: Input 1 1 0 0
I>: Input 2 0 1 0
R: Resuit word
0 0 1
DOUBLE . : . o Output
JEN— Takes the logical exclusive NOR of corresponding bits in double words of
EXCLUSIVE NOR XNRLE13) || ord data ar?d/or constants. P 9 Required
XNRL
@XNRL :1 (I4.14+1). (I, 15+1) + (I4.14+1). (I, [,+1) - (R, R+1)
613 2 l113+1 | 1o+1 | R, R+1
R
1 1 1
l1: Input 1 1 0 0
I>: Input 2
R: 1st result word 0 1 0
0 0 1
COMPLEMENT | I wozer | |Turns OFF all ON bits and turns ON all OFF bits in Wd. Output
COM (029) o Required
@COM wd Wd-Wd:1 - 0and0 - 1
029
Wd: Word
DOUBLE COM- ; P Output
PLEMENT — comL(e14) Turns OFF all ON bits and turns ON all OFF bits in Wd and Wd+1. Required
COML wd (Wd+1, wd) - (Wd+1, wd)
@COML
614 \Wd: Word

108

Special Math Instructions Section 3-12
3-12 Special Math Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
BINARY ROOT — ROTB(620) Computes the square root of the 32-bit binary content of the specified words O“tp"_'t
ROTB and outputs the integer portion of the result to the specified result word. Required
@ROTB S
620
R
[s s | =-[8]
S: 1st source
wol Binary data (32 bits) Binary data (16 bits)
R: Result word
BCD SQUARE Com i ; Output
J— putes the square root of an 8-digit BCD number and outputs the integer ’
ROOT ROOT ROOT(072) portion of the result to the specified result word. Required
@ROOT S
072 R | S+1 S | — | R
sté;g't source BCD data (8 digits) BCD data (4 digits)
R: Result word
ARITHMETIC Calculates the sine, cosine, or a linear extrapolation of the source data. Output
PROCESS APR(069) The linear extrapolation function allows any relationship between X and Y to be | Required
APR approximated with line segments.
Cc
@APR
069 S
R
C: Control word
S: Source data
R: Result word
FLOATING - - : " : : Output
— Divides one 7-digit floating-point number by another. The floating-point .
POINT DIVIDE FDIV(079) numbers are expressed in scientific notation (7-digit mantissa and 1-digit Required
@EB:\\; Dd exponent).
079 Dr Quotient
R L Rt | R |
Dd: 1st dividend Dr+1 Dr | > | Dd+1 | Dd |
word
Dr: 1st divisor
word
R: 1st result word
BIT COUNTER e : Output
— Counts the total number of ON bits in the specified word(s).
BCNT BCNT(067) pe (s) Required
@BCNT N S
067 N words
S Counts the number
R to of ON bits.
S+(N-1) ’
N: Number of Binary result
words
S: 1st source S E—
word
R: Result word

109

Floating-point Math I nstructions

Section 3-13

3-13 Floating-point Math Instructions

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
FLOATING TO ; ; : = o ; Output
JE— Converts a 32-bit floating-point value to 16-bit signed binary data and places -
16-BIT FIX FIX(450) the result in the specified result word. Required
S
@FIX | S+1 | S | Floating-point data
450 R (32 bits)
S: 1st source . .
R: Result word (16 bits)
FLOATINGTO | __| Converts a 32-bit floating-point value to 32-bit signed binary data and places | QutPut
32-BIT FixL FIXL(451) | |the result in the specified result words. Required
S
@FIXL R | S+1 S | Floating-point data
451 (32 bits)
|
S: 1st source
word [R+t R | si i
. gned binary data
R: 1st result word (32 bits)
16-BIT TO PP ; ; ; ; Output
— Converts a 16-bit signed binary value to 32-bit floating-point data and places -
FLOATING FLT FLT(452) the result in the specified result words. Required
S
@FLT . .
R Signed binary data
‘ (16 bits)
S: Source word
R: 1stresultword | R+1 | R | Floating-point data
(32 bits)
32-BIT TO Converts a 32-bit signed binary val -bit floating-poi Output
—_ y value to 32-bit floating-point data and places .
FLOATING FLTL FLTL(453) | |ihe result in the specified resuit words. Required
S
@FLTL R | S+1 S Signed binary data
453 (32 bits)
/
S: 1st source . .
word | R+1 R | Floating-point data
R: 1st result word (32 bits)
FLOATING- h A : e Output
POINT ADD — +F(454) édscliﬁttvv&/grgs bit floating-point numbers and places the result in the specified Required
+F
Au
@igz Ad | Au+1 | Au | Augend (floating-point
data, 32 bits)
R
Addend (floating-point
+ | Ad+1 | Ad)
Au: 1st augend data, 32 bits)
word
AD: 1st addend . .
word | R | R | Result (floating-point
R: 1st result word data, 32 bits)
FLOATING- ; ; ; Output
JE— Subtracts one 32-bit floating-point number from another and places the result .
POINT —F(455) | lin'the specified result words. Required
SUBTRACT Mi
- . .
@-F Su | Mi+1 | Mi | Minuend (floating-
455 point data, 32 bits)
R
_| Su+1 | Su | Subtrahend (floating-
Mi: 1st Minuend point data, 32 bits)
\évord
u:ist
Subtrahend word | R+1 | R | Result (floating-
R: 1st result word point data, 32 bits)

110

Floating-point Math Instructions Section 3-13
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
FLOATING- il ; ; ; ; Output
— Multiplies two 32-bit floating-point numbers and places the result in the
POINT MULTIPLY XF(456) speciFf)ied result words, P Required
*F
* Md . .
@*F | Md-+1 | Md | Multiplicand (floating-
456 Mr point data, 32 bits)
R x| we | Mr | Muttiplier (floating-
in 2 bi
Md: 1st point data, 32 bits)
Multiplicand word
\,I\VACEI:'JSt Multiplier | R+1 | R | Result (floating-
R 1st result word point data, 32 bits)
FLOATING- L . N : : Output
— Divides one 32-bit floating-point number by another and places the result in
POINT DIVIDE [F(457) | |the specified result wordsg. P Y P Required
IF
Dd - .
@/F | Dd+1 | Dd | Dividend (floating-
457 Dr point data, 32 bits)
R +| Dr+1 | Dr | Divisor (floating-
Dd: 1st Dividend point data, 32 bits)
word
vl?/g r;St Divisor | R+1 | R | Result (floating-
R: 1st result word point data, 32 bits)
DEGREES TO ; ; ; ; Output
J— Converts a 32-bit floating-point number from degrees to radians and places .
RADIANS RAD RAD(458) | | the result in the specified result words. Required
@RAD S .
458 R | S+1 S | Source (degrees, 32-bit
floating-point data)
S: 1st source | |
word ; i
‘ R+1 R Result (radians, 32-bit
R: st result word floating-point data)
RADIANS TO — Converts a 32-bit floating-point number from radians to degrees and places Output
DEGREES DEG DEG(459)| | the result in the specified result words. Required
@DEG S . .
459 R | S+1 S | Source (radians, 32-bit
floating-point data)
S: 1st source
word
R: 1st result word | R+1 R | Result (degrees, 32-bit
floating-point data)
SINE ; ; : ; ; ; Output
J— Calculates the sine of a 32-bit floating-point number (in radians) and places -
SIN SIN(460) the result in the specified result words. Required
@SIN IS
460 R SIN (| S+1 S |) Source (32-bit
floating-point
S: 1st source data)
word
R: 1st result word | R+1 R | Result (32-bit
floating-point
data)
COSINE JEN— Calculates the cosine of a 32-bit floating-point number (in radians) and places Output
Ccos COS(461) | Ithe result in the specified result words. Required
@COos S Source (32-bit
461 R COS(l S+1 S |) floating-point
data)
S: 1st source '
word [R R | Result (32-bit

R: 1st resuit word

floating-point
data)

111

Floating-point Math I nstructions Section 3-13
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
TANGENT ; : ; ; ; Output
[— Calculates the tangent of a 32-bit floating-point number (in radians) and .
@%N TAN(262) places the result in the specified result words. Required
S
462 () Source (32-bit
R TAN | S+1 S | floating-point
S: 1st source \J data)
word
R: 1st result word | R+1 R | Result (32-bit
floating-point
data)
ARC SINE — ASIN(463) Calculates the arc sine of a 32-bit floating-point number and places the result O“tpt_“
ASIN in the specified result words. (The arc sine function is the inverse of the sine Required
@ASIN s function; it returns the angle that produces a given sine value between -1 and
463 1)
R Source (32-bit
S: 1st source SIN (| S+1 S |) floating-point
word data)
R: 1st result word v
[R+t R | Result (32-bit
floating-point
data)
ARC COSINE —— ACOS(464) | | Calculates the arc cosine of a 32-bit floating-point number and places the O“tpt_"
ACOS result in the specified result words. (The arc cosine function is the inverse of Required
@ACOS S the cosine function; it returns the angle that produces a given cosine value
464 R between -1 and 1.)
Source (32-bit
S: 1st source cos (| S+1 S |) floating-point
word data)
R: 1st result word v
| R | R | Result (32-bit
floating-point
data)
ARCTANGENT | ATAN(465) | | Calculates the arc tangent of a 32-bit floating-point number and places the Output
ATAN result in the specified result words. (The arc tangent function is the inverse of | Required
@ATAN S the tangent function; it returns the angle that produces a given tangent value.)
465
R Source (32-bit
S: 1st source TAN (| S+1 S |) floating-point
word data)
R: 1st result word \J
[R R | Result (32-bit
floating-point
data)
SQUARE ROOT Calculates the s i P Output
[— quare root of a 32-bit floating-point number and places the .
SQRT SQRT(466) | |result in the specified result words. Required
@SQRT s
466 Source (32-bit
R | S+1 S | floating-point
S: 1st source] data)
word
R: 15t result word [R+ R | Result (32-bit

floating-point
data)

112

Floating-point Math Instructions Section 3-13
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
EXPONENT — EXP(467) Calculates the natural (base e) exponential of a 32-bit floating-point number O“tpt_"
@E;EE and places the result in the specified result words. Required
S .
467 Source (32-bit
R [s | s | floating-point
S: 1st source e ‘ data)
word
R: 1st resuit word [Rt | R | Result (32-bit
floating-point
data)
LOGARITHM — LoG(468)| |Calculates the natural (base e) logarithm of a 32-bit floating-point number and Output
@::8((3; places the result in the specified result words. Required
S .
468 Source (32-bit
R Ioge| S+1 S | floating-point
S: 1st source] data)
word
R: Lst result word | R R | Result (32-bit
floating-point
data)
EXPONENTIAL ; ; : ; ; Output
[— Raises a 32-bit floating-point number to the power of another 32-bit .
POWER PWR PWR(840) floating-point number. Required
@PWR B — Power
840 E E-+1
R Be1 | s | = [Ra | R
B: 1st base word B
E: 1st exponent ase
word
R: 1st result word
Floating Symbol | ysing Lp: Compares the specified single-precision data (32 bits) or constants and creates | LD:
Comparison an ON execution condition if the comparison result is true. Not required
(CS1-H, CJ1-H, Symbol, opien™ | Three kinds of symbols can be used with the floating-point symbol comparison
CJIM, or CS1D s1 instructions: LD (Load), AND, and OR. AND or OR:
only) or OR:
y S2 Required
LD, AND. or OR
+ | Using AND:
=F (329), | __| —
<>F (330)’ Symbol, option|
<F (331), s1
<=F (332), S2
>F (333),
or >=F (334) Using OR:
— | Symbol, option J
S1
S2

S1: Comparison data 1
S2: Comparison data 2

113

Double-precision Floating-point I nstructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-14
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
FLOATING- Converts the specified single-precision floating-point data (32-bit decimal-point | Output
POINT TO ASCII FSTR(448) | | or exponential format) to text string data (ASCII) and outputs the result to the | required
(CS1-H, CJ1-H, destination word.
CJ1M, or CS1D S
only) C
FSTR
@FSTR D
448 S: 1st source
word
C: Control word
D: Destination
word
ASCII TO FLOAT- Converts the specified text string (ASCII) representation of single-precision Output
ING-POINT FVAL(449) | | floating-point data (decimal-point or exponential format) to 32-bit single-preci- | required
(CS1-H, CJ1-H, S sion floating-point data and outputs the result to the destination words.
CJ1M, or CS1D
only) D
FVAL
@FVAL

449

S: Source word
D: 1st destination
word

3-14 Double-precision Floating-point Instructions (CS1-H, CJ1-
H, CJ1M, or CS1D Only)

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DOUBLE FLOAT- Converts the specified double-precision floating-point data (64 bits) to 16-bit Output
ING TO 16-BIT FIXD(841) | | signed binary data and outputs the result to the destination word. Required
BINARY S
FIXD
@FIXD D
841
S: 1st source
word
D: Destination
word
DOUBLE FLOAT- Converts the specified double-precision floating-point data (64 bits) to 32-bit Output
ING TO 32-BIT FIXLD(842) | | signed binary data and outputs the result to the destination words. Required
BINARY S
FIXLD
@FIXLD D
842
S: 1st source
word
D: 1st destination
word
16-BIT BINARY Converts the specified 16-bit signed binary data to double-precision floating- Output
TO DOUBLE DBL(843) | | point data (64 bits) and outputs the result to the destination words. Required
FLOATING S
DBL
@DBL D
843

S: Source word
D: 1st destination
word

114

Double-precision Floating-point I nstructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-14
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
32-BIT BINARY Converts the specified 32-bit signed binary data to double-precision floating- Output
TO DOUBLE DBLL(844) [| point data (64 bits) and outputs the result to the destination words. Required
FLOATING S
DBLL
@DBLL D
844
S: 1st source
word
D: 1st destination
word
DOUBLE FLOAT- Adds the specified double-precision floating-point values (64 bits each) and Output
ING-POINT ADD +D(845) outputs the result to the result words. Required
+D
@+D Au
845 Ad
R
Au: 1st augend
word
Ad: 1st addend
word
R: 1st result word
DOUBLE FLOAT- Subtracts the specified double-precision floating-point values (64 bits each) Output
ING-POINT SUB- -D(846) and outputs the result to the result words. Required
TRACT Mi
-D
@-D Su
846
R
Mi: 1st minuend
word
Su: 1st subtra-
hend word
R: 1st result word
DOUBLE FLOAT- Multiplies the specified double-precision floating-point values (64 bits each) and | Output
ING-POINT MUL- *D(847) outputs the result to the result words. Required
TIPLY Md
*D
@xD Mr
847
R
Md: 1st multipli-
cand word
Mr: 1st multiplier
word
R: 1st result word
DOUBLE FLOAT- Divides the specified double-precision floating-point values (64 bits each) and | Output
ING-POINT /D(848) outputs the result to the result words. Required
DIVIDE Dd
/D
@b Dr
848
R
Dd: 1st Dividend
word
Dr: 1st divisor
word
R: 1st result word
DOUBLE Converts the specified double-precision floating-point data (64 bits) from Output
DEGREES TO RADD(849)| | degrees to radians and outputs the result to the result words. Required
RADIANS S
RADD
@RADD R

849

S: 1st source
word
R: 1st result word

115

Double-precision Floating-point I nstructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-14
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DOUBLE RADI- Converts the specified double-precision floating-point data (64 bits) from radi- | Output
ANS TO DEGD(850)| | ans to degrees and outputs the result to the result words. Required
DEGREES S
DEGD
@DEGD R
850
S: 1st source
word
R: 1st result word
DOUBLE SINE Calculates the sine of the angle (radians) in the specified double-precision Output
SIND SIND(851) | | floating-point data (64 bits) and outputs the result to the result words. Required
@SIND S
851
R
S: 1st source
word
R: 1st result word
DOUBLE Calculates the cosine of the angle (radians) in the specified double-precision Output
COSINE COSD(852)| | floating-point data (64 bits) and outputs the result to the result words. Required
COSD S
@COSD
852 R
S: 1st source
word
R: 1st result word
DOUBLE TAN- Calculates the tangent of the angle (radians) in the specified double-precision | Output
GENT TAND(853) | | floating-point data (64 bits) and outputs the result to the result words. Required
TAND s
@TAND
853 R
S: 1st source
word
R: 1st result word
DOUBLE ARC Calculates the angle (in radians) from the sine value in the specified double- Output
SINE ASIND(854) | | precision floating-point data (64 bits) and outputs the result to the result words. | Required
ASIND S (The arc sine function is the inverse of the sine function; it returns the angle that
@ASIND produces a given sine value between -1 and 1.)
854 R
S: 1st source
word
R: 1st result word
DOUBLE ARC Calculates the angle (in radians) from the cosine value in the specified double- | Output
COSINE ACOSD(855) | precision floating-point data (64 bits) and outputs the result to the result words. | Required
ACOSD (The arc cosine function is the inverse of the cosine function; it returns the
@ACOSD S angle that produces a given cosine value between -1 and 1.)
855 R
S: 1st source
word
R: 1st result word
DOUBLE ARC Calculates the angle (in radians) from the tangent value in the specified double- | Output
TANGENT ATAND(856)| | precision floating-point data (64 bits) and outputs the result to the result words. | Required
ATAND S (The arc tangent function is the inverse of the tangent function; it returns the
@ATAND angle that produces a given tangent value.)
856 R

S: 1st source
word
R: 1st result word

116

Double-precision Floating-point I nstructions (CS1-H, CJ1-H, CJ1M, or CS1D Only) Section 3-14
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DOUBLE Calculates the square root of the specified double-precision floating-point data | Output
SQUARE ROOT SQRTD(857) | (64 bits) and outputs the result to the result words. Required
SQRTD s
@SQRTD
857 R
S: 1st source
word
R: 1st result word
DOUBLE EXPO- Calculates the natural (base e) exponential of the specified double-precision Output
NENT EXPD(858) | | floating-point data (64 bits) and outputs the result to the result words. Required
EXPD S
@EXPD
858 R
S: 1st source
word
R: 1st result word
DOUBLE LOGA- Calculates the natural (base e) logarithm of the specified double-precision float- | Output
RITHM LOGD(859) | | ing-point data (64 bits) and outputs the result to the result words. Required
LOGD S
@LOGD
859 R
S: 1st source
word
R: 1st result word
DOUBLE EXPO- Raises a double-precision floating-point number (64 bits) to the power of Output
NENTIAL PWRD(860) | | another double-precision floating-point number and outputs the result to the Required
POWER B result words.
PWRD
@PWRD E
860
R
B: 1st base word
E: 1st exponent
word
R: 1st result word
DOUBLE SYM- Using LD: Compares the specified double-precision data (64 bits) and creates an ON exe- | LD:
BOL COMPARI- cution condition if the comparison result is true. Not required
SON Symbol, optien ™ | Three kinds of symbols can be used with the floating-point symbol comparison
LD, AND. or OR S1 instructions: LD (Load), AND, and OR. AND or OR:
* S2 Required
=D (335),
<>D (336), | Using AND:
<D (337), | 1 _
<:D (338), Symbol, option|
>D (339), S1
or >=D (340) S2
Using OR:
Symbol, option 4
S1
S2

S1: Comparison data 1
S2: Comparison data 2

117

Table Data Processing I nstructions

Section 3-15

3-15 Table Data Processing Instructions

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
SET STACK — sseT(630) | |Defines a stack of the specified length beginning at the specified word and Output
@2251 initializes the words in the data region to all zeroes. Required
630 B PLC memory
N address
B m
TB: 1st stack {TB+1 m+(N_l) m+1
address N words
N: Number of Last word {TB+2_ o4 — | m+§ in stack
TB+3
words in stack " mr
m+4
Stack .
pointer .
m+(N-1)
g.LI.JASgKONTO PUSH(632) Writes one word of data to the specified stack. gutpgt d
PUSH PLC memory PLC memory equire
@PUSH B address address
632 S
8 n LL:] n
TB+1| +
TB: 1st stack TB+2 Tzé
address {TB+3 [{m m
S: Source word :
1 m
' m+1
n
n
LAST IN FIRST] o : Output
— Reads the last word of data written to the specified stack (the newest data in the
ouT e LIFO34) | | Siacky, P (Required
B
@LIFO Stack PLC memory PLC memory
634 D pointer address address
. T8 B
ng:esstsstack TB+1] n Newest 1g+1 n
D: Destination TB+2) m data [TB+2
word TB+3 TB+3 m-1
: / Stack :
pointer
H m-1 Ajs
m left un-
chang-
ed.
n n
The pointer is | Last-in first-out
decremented. |
FIRST IN FIRST) : o : Output
— Reads the first word of data written to the specified stack (the oldest data in the
OUT FIFO(e3g) | | feads P (Required
FIFO B PLC memory PLC memory
@FIFO D address address
633 T8 n Oldest T8 n
. Stack B+l data TB+1
Pl i
_ 1 ——
D: Destination TB+3 TB+3]
word Stack
pointer
¥ M m-1
M m : M m
n n
First-in first-out

118

Table Data Processing I nstructions Section 3-15
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DIMENSION N : Output
— Defines a record table by declaring the length of each record and the number of .
RECORD TABIISIEM DIM®31) | |records. Up to 16 record tables can be defined. Required
N
@DIM Table number (N)
631 LR - \
NR Record Record 0
B
Record Record 1
NRT?_zIﬁgtnﬁngFer Number of records) > LR x NR words
each record :
NR: Number of
records R
TB: st table ecord { Record NR-1
word v 7
SET RECORD " " s Output
—— SETR(635) | |Writes the location of the specified record (the PLC memory address of the :
LOCATION SETR (659) beginning of the record) in the specified Index Register. Required
@SETR N PLC memory
635 R Table number (N) address
D SETR(635) writes the PLC memory ad-
dress (m) of the first word of record R
to Index Register D.
N: Table number m
R: Record
number D
D: Destination |
Index Register R III
GET RECORD : Output
— Returns the record number of the record at the PLC memory address contained .
NUMBER GETR(636) | |in the specified Index Register. Required
GETR N
@GETR Table number (N) | PLC memory
636 IR address
D GETR(636) writes
the record number of
N: Table number the record that in-
IR: Index Register cludes I/O memory
D: Destination address (m) to D.
word
o o]
DATA SEARCH i Output
— Searches for a word of data within a range of words.
SRCH SRCH(181) g Required
@SRCH c PLC memory
181 address
R1
R1 ™. Search
Cd)
C: 1st control
word
R1:1st word in
range R1+(C-1)

Cd: Comparison
data

119

Table Data Processing I nstructions Section 3-15
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
SWAP BYTES . ; : ; Output
— Switches the leftmost and rightmost bytes in all of the words in the range.
SWAP SWAP(637) 9 y 9 Required
@SWAP N Byte position is swapped.
637
R1 /\
N: Number of v v
words R1
R1:1st word in
range N
{ }
FIND MAXIMUM : ; ; Output
I Finds the maximum value in the range.
MAX MAX(182) 9 Required
@MAX C PLC memory
182 address
R1 R1
D
C words
C: 1st control
word Max.
R1:1st word in R1+(W-1) J value
range
word e o
FIND MINIMUM : . ; Output
— Finds the minimum value in the range.
MIN MIN(183) 9 Required
MIN
@ 183 C PLC memory
address
R1 R1
D
C words
C: 1st control
word .
R1:1st word in Min. value
range R1+(W-1) 7
D: Destination
word IRoo[m]
SUM ; Output
— Adds the bytes or words in the range and outputs the result to two words.
SUM Sum(184) vte 9 P Required
@SuMm c o w]
184
R1
D R1
C: 1st control WCH
word
R1:1st word in R1+(W=1)
range *)
D: 1st destination | | |
word
D+1 D
FRAME P Output
CHECKSUM — Fes(180) Calculates the ASCII FCS value for the specified range. Required
FCS c
@FCS
180 R1 C units
D
C: 1rgt control Calculation ASCII conversion
WOl
R1: 1st word in FCS value]
range
D: 1st destination
word

120

Table Data Processing I nstructions Section 3-15
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
STACK SIZE Counts the amount of stack data (humber of words) in the specified stack. Output
READ SNUM(638) required
(CS1-H, CJ1-H,
CJ1M, or CS1D B
only) D
SNUM
@SNUM

638

TB: First stack
address

D: Destination
word

C: Offset value
D: Destination
word

STACK DATA Reads the data from the specified data element in the stack. The offset value Output
READ SREAD(639) | indicates the location of the desired data element (how many data elements required
(CS1-H, CJ1-H, before the current pointer position).
CJ1M, or CS1D B
only) C
SREAD
@SREAD D
639 TB: First stack
address
C: Offset value
D: Destination
word
STACK DATA Writes the source data to the specified data element in the stack (overwriting the | Output
OVERWRITE SWRIT(640)| | existing data). The offset value indicates the location of the desired data element | required
(CS1-H, CJ1-H, (how many data elements before the current pointer position).
CJ1M, or CS1D 1B
only) C
SWRIT
@SWRIT S
640 | 1B: First stack
address
C: Offset value
S: Source data
STACK DATA Inserts the source data at the specified location in the stack and shifts the rest of | Output
INSERT SINS(641) | | the data in the stack downward. The offset value indicates the location of the required
(CS1-H, CJ1-H, insertion point (how many data elements before the current pointer position).
CJ1M, or CS1D B
only) C
SINS
@SINS S
6411 18- First stack
address
C: Offset value
S: Source data
STACK DATA Deletes the data element at the specified location in the stack and shifts the rest | Output
DELETE SDEL(642)| | of the data in the stack upward. The offset value indicates the location of the required
(CS1-H, CJ1-H, deletion point (how many data elements before the current pointer position).
CJ1M, or CS1D 1B
only) C
SDEL
@SDEL D
642 TB: First stack
address

121

Data Control Instructions Section 3-16
3-16 Data Control Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
PID CONTROL N . Output
— Executes PID control according to the specified parameters.
PID PID(190) 9 P P Required
190 S l’ Parameters (C to C+8)
C
D PV input (S) —| PID control
S: Input word l
C: 1st parameter
V,S".’g'utput word Manipulated variable (D)
PID CONTROL Executes PID control according to the specified parameters. The PID con- Output
WITH AUTO PIDAT(191) |stants can be auto-tuned with PIDAT(191). required
TUNING S
(CS1-H, CJ1-H,
CJ1M, or CS1D C
only)
PIDAT D
1911 Input word
C: 1st parameter
word
D: Output word
LIMIT CONTROL] : fe it Output
— Controls output data according to whether or not input data is within er
LMT LMT(680) | |and lower Illjr're:tjs notow b 'S Wi P Required
@LMT s D
680
C
D
S:lnputword | Upperlimit """ "TTTTTTTTTTTToT T

C: 1st limit word
D: Output word

Upper limit
C+1

Lower limit
C

DEAD BAND
CONTROL

BAND
@BAND
681

— BAND(681)

S
C
D

S: Input word
C: 1st limit word
D: Output word

Controls output data according to whether or not input data is within the dead

band range.

Lower limit (C)
l

Output
A

t
Upper limit (C+1)

> |nput

Output
Required

122

Data Control Instructions Section 3-16
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
ggﬁgégPE — ZONE(682) Adds the specified bias to input data and outputs the result. g:tﬁllij:ed
ZONE S Output) a
@ZONE
682 C N)
D Positive bias (C+1) -
S: Input word)G 0 Input
C: 1st limit word
D: Output word - . .
L / Negative bias (C)
SCALING : : : : : Output
— Converts unsigned binary data into unsigned BCD data according to the .
SCL SCL(194) specified linear function. Required
@SCL s
194 R (unsigned BCD) Scaling is performed according
P1 to the linear function defined
by points A and B.
R
i P Ad (BCD) | Converted
S: Source word Bdp----oooooooo- Point B I
: ! P1+1 | As (BIN) value
P1: 1st parameter adlPom i + s
wod AT ! ‘ P1+2 | Bd (BCD
R: Result word I | * ()] Converted
! ! P1+3 | Bs (BIN) value
As Bs S (unsigned binary)
SCALING 2 . " : : " i Output
— Converts signed binary data into signed BCD data according to the specified .
@gg::% SCL2(486) | | jnear function. An offset can be input in defining the linear function. Required
486 S .
P1 Positive Offset Negative Offset
R R (signed BCD) R (signed BCD)
S: Source word
P1: 1st parameter
word AY
R: Result word AY
Offset AX
AX
S (signed binary) S (signed
/ Offset binary)
Offset of 0000
P1 |_Offset | (Signed binary) R (signed BCD)
P1+1| AY (Signed binary)
P1+2 | AX (Signed BCD)
AY
Offset = 0000 he
AX
S (signed
binary)

123

Data Control Instructions Section 3-16
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
SCALING 3 N Converts signed BCD data into signed binary data according to the Output
SCL3 SCL3(487) | |specified linear function. An offset can be input in defining the linear Required
@SCL3 s function.
487 .
P1 Positive Offset Negative Offset
R R (signed binary) R (signed binary)
S: Source word Max Max conversion
P1: 1st parameter conver- beceemeceeeo, L.
word sion /
R: Result word
AY AY
/ TOAX AX
Min 71 | Offset Offset\ S (signed BCD)
conver- : _Y
; S (signed BCD)
sion / Min. conversion
Offset of 0000
R (signed binary)
Max [ttt
conver-
sion
AY
X
A
S (signed BCD)
~~~7| Min. conversion
AVERAGE : . Output
E— Calculates the average value of an input word for the specified number of
AVG AVG(195) cyc|esl 9 P P Required
195 S
| S: Source word |
N
R
S: Source word
N: Number of [ N: Number of cycles
cycles
R: Result word
R| | —
R+1[ ] | Pointer |
Average Valid Flag Average
L R+2] |
L B+3| |
: i N values
vt |

124



Subroutine | nstructions

Section 3-17

3-17 Subroutine Instructions

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
SUBROUTINE ; : i ; Output
— Calls the subroutine with the specified subroutine number and executes that
CALL SBS(091) | | program. P Required
SBS N Execution condition ON
@SBS —
091 | N: Subroutine
number —iF— sBs
n
Main program B
B
PR
SBN
n
Subroutine
program A
(SBN(092) to
A RET(093))
|
v
RET Program end
END
MACRO ——{MCRO(099) | |Calls the subroutine with the specified subroutine number and executes that O“tp"_'t
MCRO program using the input parameters in S to S+3 and the output parameters in | Required
@MCRO N D to D+3.
099
S MCRO(099)
D s —— AB00 ——} MCRO
s+1 —— A601 Ny
S+2 — A602 s -
N: Subroutine 83 —— A603 5
number
S:1st input MCRO
parameter word o % N
D: 1st output L >
parameter word MCRO(0%9) |
D — A604 SBN
D+1 — AB05S
D+2 — AB06 B PP
— o7 e ubroutine uses AGO0,
. loASO7asoutputs.
SUBROUTINE : ——— : : s Output
— Indicates the beginning of the subroutine program with the specified
ENTRY SBN(092) | | subroutine numt?er. 9 pred P Not required
SBN N
092
N: Subroutine ——— sBs MCRO
number S n or
SBN
t Subroutine region
RET
SUBROUTINE Indicates the end of a subroutine program. Output
RETURN RET(093) Not required
RET
093

125



Subroutine I nstructions

Section 3-17

Instruction Symbol/Operand Function Location
Mnemonic Execution

Code condition
GLOBAL SUB- Calls the subroutine with the specified subroutine number and executes that Output
ROUTINE CALL GSBS(750) program. Not required
(CS1-H, CJ1-H,
CJ1M, or CS1D N
only) . .

GSBS N: Szbroutme

750 | Number

GLOBAL SUB- Indicates the beginning of the subroutine program with the specified subroutine | Output
ROUTINE ENTRY —|GSBN(751) | number. Not required
(CS1-H, CJ1-H,
CJ1M, or CS1D N

only)

N: Subroutine

GSBN b
751 | Number
GLOBAL SUB- Indicates the end of a subroutine program. Output
ROUTINE -GRET(752) Not required
RETURN g
(CS1-H, CJ1-H,

CJ1M, or CS1D
only)
GRET
752

126




Interrupt Control I nstructions Section 3-18
3-18 Interrupt Control Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition

SET INTERRUPT

— Sets up interrupt processing for I/O interrupts or scheduled interrupts. Both I/O O“tp"_'t
M(ﬁtse'é (t')\loésétipD') MSKS(690) interrupt tasks and scheduled interrupt tasks are masked (disabled) when the | Required
p y : N PC is first turned on. MSKS(690) can be used to unmask or mask 1/0
MSKS interrupts and set the time intervals for scheduled interrupts.
@MSKS S (I/O Interrupts are not supported by CJ1 CPU Units.)
690 Interrupt Input Unit 0 to 3
N: Interrupt
identifier /O
S: Interrupt data interrupt
Mask (1) or unmask (0)
interrupt inputs 0 to 7.
Time interval
Scheduled
. interrupt Set scheduled interrupt
time interval.
READ INTER- Reads the current interrupt processing settings that were set with MSKS(690). | Output
RUPT MASK (Not |~ | MSKR(692) Required
supported by
CS1D.) N
MSKR D
@MSKR
692 |N: Interrupt
identifier
D: Destination
word
CLEAR : . ; : : Output
S Clears or retains recorded interrupt inputs for I/O interrupts or sets the time to .
!sl\LlJTEErRthE (Not CLI(691) the first scheduled interrupt for scheduled interrupts. Required
Csplllaj) y N N =0to 3 (I/O Interrupts are not supported by CJ1 CPU Units.)
CLI S T !nterrupt T
@cCLlI Init:’;Ll;pr: . inputn
691 N: Interrupt | |
identifier Internal
S: Interrupt data I”;?;tnuas' status ?
Recorded interrupt cleared Recorded interrupt retained
N=4to5
MSKS(690) -
Execution of scheduled
\/ interrupt task.
Time to first

scheduled interrupt

127



Interrupt Control I nstructions Section 3-18
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DISABLE ; ; ; ; Output
INTERRUPTS DI(693) Disables execution of all interrupt tasks except the power OFF interrupt. Required
DI
@Dl
P I
0000.00
Disables execution of all
interrupt tasks (except
the power OFF interrupt).
X
ENABLE ’ : ’ : Output
INTERRUPTS EI(694) Enables execution of all interrupt tasks that were disabled with DI(693). Not required
El
694

T

Disables execution of all
interrupt tasks (except the
power OFF interrupt).

Enables execution of all
disabled interrupt tasks.

128



High-speed Counter and Pulse Output Instructions (CJ1IM-CPU22/23 Only)

Section 3-19

3-19 High-speed Counter and Pulse Output Instructions (CJ1M-
CPU22/23 Only)

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

MODE CONTROL
INI

@INI

880

— INI

P

C

NV

P: Port specifier
C: Control data

NV: 1st word with
new PV

INI(880) is used to start and stop target value comparison, to change
the present value (PV) of a high-speed counter, to change the PV of
an interrupt input (counter mode), to change the PV of a pulse output,
or to stop pulse output.

Output
Required

HIGH-SPEED
COUNTER PV
READ
PRV
@PRV
881

PRV

P

C

D

P: Port specifier
C: Control data

D: 1st destination
word

PRV(881) is used to read the present value (PV) of a high-speed
counter, pulse output, or interrupt input (counter mode).

Output
Required

COMPARISON
TABLE LOAD

CTBL
@CTBL

882

CTBL

P

C

B

P: Port specifier
C: Control data

TB: 1st compari-
son table word

CTBL(882) is used to perform target value or range comparisons for the
present value (PV) of a high-speed counter.

Output
Required

SPEED OUTPUT

SPED
@SPED

885

SPED

P

M

F

P: Port specifier
M: Output mode

F: 1st pulse fre-
quency word

SPED(885) is used to specify the frequency and perform pulse output without
acceleration or deceleration.

Output
Required

SET PULSES

PULS
@PULS

886

PULS

P

T

N

P: Port specifier
T: Pulse type

N: Number of
pulses

PULS(886) is used to set the number of pulses for pulse output.

Output
Required

129




Step Instructions Section 3-20
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
PULSE OUTPUT PLS2(887) is used to set the pulse frequency and acceleration/deceleration Output
PLS2 PLSZ || rates, and to perform pulse output with acceleration/deceleration (with different | Required
@PLS?2 p acceleration/deceleration rates). Only positioning is possible.
887 M
S
F
P: Port specifier
M: Output mode
S: 1st word of set-
tings table
F: 1st word of
starting frequency
ACCELERATION ACC(888) is used to set the pulse frequency and acceleration/deceleration Output
CONTROL — ] AcCC rates, and to perform pulse output with acceleration/deceleration (with the Required
ACC p same acceleration/deceleration rate). Both positioning and speed control are
@ACC possible.
888 M
S
P: Port specifier
M: Output mode
S: 1st word of set-
tings table
ORIGIN SEARCH ORG(889) is used to perform origin searches and returns. Output
ORG ORG Required
@ORG p
889 c
P: Port specifier
C: Control data
PULSE WITH PWM(891) is used to output pulses with a variable duty factor. Output
VARIABLEDUTY | — ] __PWM Required
FACTOR p
PWM
@ F
891 D
P: Port specifier
F: Frequency
D: Duty factor
3-20 Step Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
STEP DEFINE STEP(008) functionS in following 2 ways, depending on its position and Output
STEP |~ | STEP(008) | | whether or not a control bit has been specified. Required
008 (1)Starts a specific step.
B (2)Ends the step programming area (i.e., step execution).
B: Bit
STEP START SNXT(009) is used in the following three ways: Output
SNXT SNXT(009) (1)To start step programming execution. Required
009 B (2)To proceed to the next step control bit.
(3)To end step programming execution.
B: Bit

130



Basic /O Unit Instructions Section 3-21
3-21 Basic I/O Unit Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
1/0 REFRESH i Output
— Refreshes the specified 1/0 words.
IORF IORF(097) P Required
@IORF St I/O bit area or 1/O Unit or
097 Special I/0 Unit bit area Special 1/0 Unit
E
St: Starting word St
E: End word I/O refreshing
E
7-SEGMENT : : - ; . Output
S Converts the hexadecimal contents of the designated digit(s) into 8-bit, .
DECODER SDEC(078) 7-segment display code and places it into the upper or lower 8-bits of the Required
SDEC S specified destination words.
@SDEC
078 Di 15 1211 87 43
D Di| 0 1/0 | m | n
m._Number of digits |
S: Source word - A ~ First digit to convert
Di: Digit
designator
D: 1st destination S+1
word
HEX
@ Rightmost 8 bits (0)
7-segment
D
D+1
D+2
g\lETED‘LIGENT o — IORD(222) | |Reads the contents of the I/O Unit's memory area. CR);I;FL'}I:ed
IORD C s
@IORD S+1
222 S
D Unit number of Special /O Unit
C: Control data
S: Transfer }
source anfd _Defig'
number of words nate
D: Transfer D of CCS%L
destination and read.
number of words

131



Serial Communications | nstructions

Section 3-22

Instruction
Mnemonic

Symbol/Operand

Function

Location
Execution

Code

INTELLIGENT I/O
WRITE

condition

Outputs the contents of the CPU Unit's I/O memory area to the Special /0 Output

IOWR(223) [ | Jnit. Required

IOWR C
@IOWR

223 S D
5 D+1 —

Unit number of Special I/O Unit

Desig-

nated
number of
words writ-
ten.

C: Control data
S: Transfer
source and
number of words
D: Transfer
destination and s
number of words

CPU BUS UNIT Immediately refreshes the 1/0 in the CPU Bus Unit with the specified unit num- | Output
1/0 REFRESH

—|DLNK(226)| | ber. required
(CS1-H, CJ1-H,

CJ1M, or CS1D N
only)

DLNK | N: Unit number
@DLNK
226

3-22 Serial Communications Instructions

Instruction
Mnemonic
Code

PROTOCOL
MACRO

Symbol/Operand Function Location

Execution
condition

Output

Calls and executes a communications sequence registered in a Serial Required
equire

Communications Board (CS Series only) or Unit
PMCR Cc1

@PMCR CPU Unit Serial Communications Unit
260 Cc2 Port

S
R

—— PMCR(260)

Communications
seqquence humber

C1:Control word 1
C2: Control word 2
S: 1st send word
R: 1st receive word

External
device

TRANSMIT Outputs the specified number of bytes of data from the RS-232C port built into | Output

the CPU Unit. Required

TXD TXD(236)
@TXD S
236
C

N

S: 1st source
word

C: Control word
N: Number of
bytes

0000 to 0100 hex
(0 to 256 decimal)

132



Network I nstructions Section 3-23
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
RECEIVE Reads the specified number of bytes of data from the RS-232C port built into | Output
RXD || RXD(235) | | the CPU Unit. Required
@RXD D
235
C
N
D: 1st destination
word
C: Control word
N: Number of
bytes to store
0000 to 0100 hex
(0 to 256 decimal)
CHANGE SERIAL Changes the communications parameters of a serial port on the CPU Unit, Output
PORT SETUP — | STUP(237) | | Serial Communications Unit (CPU Bus Unit), or Serial Communications Board | Required
STUP (CS Series only). STUP(237) thus enables the protocol mode to be changed
@STUP C during PLC operation.
237 S
C: Control word
(port)
S: First source
word
3-23 Network Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
NETWORK SEND ; ; Output
— Transmits data to a node in the network.
SEND SEND(090) o Required
@SEND S Local node Destination node
090 D 15 0 15 0
— 3 —
C P n: No. of D
send
words )

S: 1st source
word

D: 1st destination
word

C: 1st control
word

133



Network I nstructions Section 3-23
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
NETWORK ; : ; Output
RECEIVE — Recv(os) glaetguests data to be transmitted from a node in the network and receives the Required
RECV S ’
@RECV
098 D Lc:(;al node 5 Source node
15 0
c D S
S: 1st source m n
word e
D: 1st destination
word
C: 1st control
word
DELIVER ; Output
COMMAND —— CMND(490) Sends FINS commands and receives the res ponse. Required
@gmmg S Local node Destination node
490 D v 0
C S Com-
mand | Command
S 1st d data (n =
:1st comman bytes
word (1) ves
D: 1st response + 5
word
C: 1st control L,
word @
\7/\
15 0
D— Re-
sponse Response
j data (m - Execute
(D—r1T? bytes)
+ E —~_ B

134



File Memory Instructions

Section 3-24

3-24 File Memory Instructions

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
READDATAFILE )| | FREAD(700)| | Reads the specified data or amount of data from the specified data file in file Output
@EEEQB memory to the specified data area in the CPU Unit. Required
C
700 Starting read address  File specified _
St specified in S1+2 and i S2 CPU Unit
82 S1+3
D
Number of
C: Control word } words specified
S :c1|st source Q in S1 and S1+1
wor
S2: Filename —
D: 1st destination Memory Card or
word EM file memory Number
(Specified by the of words
4% digit of C.) written
to D and
D+1.
File specified
in S2 CPU Unit |
/ Number of D
words T\ |D+1
Memory Card or EM file memory
(Specified by the 41" digit of C.)
\AIEIETE DATA ——FwRIT(701)| |Overwrites or appends data in the specified data file in file memory with the O“tpl_‘t
specified data from the data area in the CPU Unit. If the specified file doesn't | Required
@EWEH c exist, a new file is created with that filename.
701 D1 CPU Unit ggeérctiifr;gdm;grd File specified in D2
Startin D1+2 and
D2 addresgs’ 15 0 | D133
specified[ZZ 2| " -
o
C: Control word |0t and i+
D1:1st o
destination word Overwrite </
D2: Filename )
S: 1st source Memory Card or EM file memory
word (Specified by the 4™ digit of C.)
CPU Unit File specified in D2
. E f s
Starting 15 ¢ | find © —‘ Existing
address I ata
specifie Number of
inS words specified
in D1 and D1+1
Memory Card or EM file memory
(Specified by the 41" digit of C.)
Beginning )
; ; File speci- — New file created
5 CPU Unit of file _‘ fied in D2
tarting PP
addre_ss 15 2 ‘l\l‘u—n;ber of words
specified specified in D1
inS and Di+1___---

Memory Card or EM file memory
(Specified by the 4! digit of C.)

135



Display I nstructions

Section 3-25

3-25 Display Instructions

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DISPLAY Reads the specified sixteen words of extended ASCII and displays the mes- Output
MESSAGE MSG(046) [ | sage on a Peripheral Device such as a Programming Console. Required
MSG N
@MSG
046 M
N: Message
number
M: 1st message
word
3-26 Clock Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
CALENDAR ADD : : - Output
—_— Adds time to the calendar data in the specified words.
CADD CADD(730) P Required
@CADD c 15 87 0
730 C Minutes | Seconds
T c+1[ _Day { Hour
R c+2|__Year ! Month
+
C: 1st calendar
word
T: 1st time word 19 - 8:7 9
R: 1st result word T Minutes : Seconds
T+1 Hours
15 87 0
R Minutes | Seconds
R+1 Day Hour
R+2| Year i Month
CALENDAR : : s Output
SUBTRACT —— csuB(731) | |Subtracts time from the calendar data in the specified words. Required
CSUB c 15 87 0]
@CSuUB C Minutes | Seconds
731 T C+1| Day Hour
R C+2__Year Month
C: 1st calendar -
word
T: 1st time word 19 - 8:7 9
R: 1st result word T Minutes : Seconds
T+1 Hours
15 8.7 0
R Minutes | Seconds
R+1 Day : Hour
R+2_Year : Month

136



Debugging I nstructions Section 3-27
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
HOURS TO : : : : - Output
— Converts time data in hours/minutes/seconds format to an equivalent time in
SECONDS SEC(085) | |seconds only. a Required
SEC s
@SEC D 15 0
065 S Minutes | Seconds
S: 1st source S+1 Hours
word
D: 1st destination
word l
15 0
D
Seconds
D+1
SECONDS TO S— Converts seconds data to an equivalent time in hours/minutes/seconds Output
HOURS HMS(066) | |0 d Required
HMS s
@HMS 15 0]
066
D s ? Seconds
S: 1st source +
word
D: 1st destination
word l
15 0
D | Minutes ! Seconds
D+1 Hours
CLOCK ; : P & Output
ADJUSTMENT — DATE(735) Changes the internal clock setting to the setting in the specified source words. Required
DATE s
@DATE CPU Unit
735 |s: 1st source
word
Internal clock
S1 Minutes ! Seconds
New t
setting S+1 Day + Hour
S4+2 Year ! Month
S+3 00 i Day of week
3-27 Debugging Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
TRACE When TRSM(045) is executed, the status of a preselected bit or word is sam- | Output
MEMORY pled and stored in Trace Memory. TRSM(045) can be used anywhere in the Not required
SAMPLING program, any number of times.
TRSM

045

137



Failure Diagnosis I nstructions Section 3-28
3-28 Failure Diagnosis Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
FAILUREALARM || FAL(006) | | Generates or clears user-defined non-fatal errors. Non-fatal errors do not stop Output
FAL PC operation. Required
@FAL N FAL Error Flag ON
006 Corresponding Executed FAL Number
M H FAL |——Execution of— Flag ON
FAL(006) Error code written to A400
N: FAL number N generates a Error code and time written to Error
M: 1st message 0000 non-fatal er Log Area
word or error ror V‘g‘h FNAL ,
code to generate number N. L. - .
(#0000 to #FFFF) RN ERR Indicator flashes
E Message displayed
- I:I on Programming
Console
IAlso generates (simulates) fatal system errors.
SEVERE i - Output
FAILURE ALARM |— FALS(007) Generates user-defined fatal errors. Fatal errors stop PC operation. Required
FALS Error Flag ON
FALS N
007 |— FALS |— Execution of —— Error code written to A400
M FALS(007) Error code and time/date written
N generates a to Error Log Area
N: FALS number 0000 fa.ta| error <,
M: 1st message with FALS = -[J~ ERR Indicator lit
word or error number N. :
code to generate :
(#0000 to #FFFF) :
L I:l Message displayed
on Programming
Console
)Also generates (simulates) fatal system errors.
FAILURE POINT ; ; ; ; ; [P ; Output
— Diagnoses a failure in an instruction block by monitoring the time between ’
DETECTION FPD(269) | |execution of FPD(269) and execution of a diagnostic output and finding which | Required
FPD c input is preventing an output from being turned ON.
269 T Time monitoring function:
Starts timing when execution condition A goes
R ON. Generates a non-fatal error if output B

C: Control word
T: Monitoring time
R: 1st register
word

isn't turned ON within the monitoring time.

1
' Execution 1

ogic diagnosis 1

' condition A FPD
____________ d C
T Error-processing
block (optional)
R
Next instruction block cy ! .

Q-

xecution condition C|

Logic diagnosis function
Determines which input in C prevents
output B from going ON.

138




Other Instructions Section 3-29
3-29 Other Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
SET CARRY Sets the Carry Flag (CY). Output
STC STC(040) Required
@STC
040
CLEAR CARRY Turns OFF the Carry Flag (CY). Output
CLC CLC(041) Required
@CLC
041
SELECT EM Changes the current EM bank. Output
BANK — | EMBC(281) Required
EMBC N
@EMBC
281 | N: EM bank
number
EXTEND MAXI- Extends the maximum cycle time, but only for the cycle in which this instruction | Output
MUM CYCLE — | WDT(094) is executed. Required
TIME T
WDT
@WDT |+ .
094 T: Timer setting
SAVE CONDI- Saves the status of the condition flags. Output
TION FLAGS CCS(282) Required
(CS1-H, CJ1-H, q
CJ1M, or CS1D
only)
CCSs
@CCs
282
LOAD CONDI- Reads the status of the condition flags that was saved. Output
TION FLAGS CCL(283) Required
(CS1-H, CJ1-H,
CJ1M, or CS1D
only)
CCL
@CCL
283
CONVERT Converts a CV-series PLC memory address to its equivalent CS-series PLC Output
ADDRESS FROM [T |FRMCV(284)| | memory address. Required
cVv
(CS1-H, CJ1-H, S
CJ1M, or CS1D D
only)
FRMCV
@FRMCV
284 | S: Word contain-
ing CV-series
memory address
D: Destination
Index Register
CONVERT Converts a CS-series PLC memory address to its equivalent CV-series PLC Output
ADDRESS TO CV |~ |TOCV(285)| | memory address. Required
(CS1-H, CJ1-H,
CJ1M, or CS1D S
only)
TOCV D
@TOCV
285

S: Index Register
containing CS-
series memory
address

D: Destination
word

139



Block Programming I nstructions Section 3-30
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
DISABLE Disables peripheral servicing during program execution in Parallel Processing | Output
PERIPHERAL Mode or Peripheral Servicing Priority Mode. Required
SERVICING
(CS1-H, CJI1-H,
or CJ1IM only)
IOSP
@IOSP
287
ENABLE Enables peripheral servicing that was disabled by IOSP(287) for program exe- | Output
EEE\IZEII,E\IRGAL cution in Parallel Processing Mode or Peripheral Servicing Priority Mode. Not required
(CS1-H, CJI1-H,
or CJ1IM only)
IORS
288

3-30 Block Programming Instructions

Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
BLOCK : ; Output
— Define a block programming area. For every BPRG(096) there must be a
BPR - .
EEg%RAM 6(096) corresponding BEND(801). Required
N
BPRG X BPRG | —+
096 | N: Block program N
number
Block program
Executed when the execu
tion condition is ON.
A
BEND
BLOCK Define a block programming area. For every BPRG(096) there must be a cor- | Block program
PROGRAM END responding BEND(801). Required
BEND
801
BLOCK . Block program
BPPS Pause and restart the specified block program from another block program.
PROCRAM @11) P Prog Prog Required
811 | N:Block program —|—BPRG
number
to
BPPS n
to BPPS(811) executed
BEND for block program n.
————1BPRG
a n
: Block program n. Once
BElgD paused this block program
will not be executed even

if bit "a" is ON.

140




Block Programming I nstructions

Section 3-30
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
BLOCK BPRS o Block program
PROGRAM ©12) Pause and restart the specified block program from another block program. Required
BPRS
812 | N: Block program | ——{ BPRa
number
to
BPRS n
to BPRS(812) executed
BEND for block program n.
———1BPRaG
a n
Block program n. This block
BEtISD program will now be executed
as long as bit "a" is ON.
CONDITIONAL . - . : s Block program
EXIT(806 EXIT(806) without an operand bit exits the program if the execution condition
BLOCK EXIT (806) = ON(_ ) P prog Required
EXIT .
B: Bit operand ; ;
806 ————-1BPRG Execution  Execution
condition  condition
OFF ON
A "A" executed. | "A" executed.
Execution condition 4
EXIT
B "B" executed. |
BEND S
Block ended.
CONDITIONAL EXIT(806) B EXIT(806) without an operand bit exits the program if the execution condition BIOCk_ program
BLOCK EXIT . is ON Requ”ed
EXIT |B: Bit operand
Operand bit  Operand bit
806 ———8PRa__ | OFF ON
(ON for (OFF for EXIT
EXIT NOT) NOT)
A "A" executed.| "A" executed.
EXIT R (EXIT NOT R) s,
B "B" executed. '
BEND .
Block ended.
CONDITIONAL EXIT(806) without an operand bit exits the program if the execution condition | Block program
BLOCK EXIT is OFF. Required
(NQT)
EXIT NOT
806

141



Block Programming I nstructions Section 3-30
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
g?ggEIONAL IF (802) If the execution condition is ON, the instructions between IF(802) and BIOCk_ program
BRANCHING B ELSE(803) will be executed and if the execution condition is OFF, the Required
instructions between ELSE(803) and IEND(804) will be executed.
I B: Bit operand
802 Execution , NO
condition Gonaiion N2
IF YES
A
"A" executed (be "B" executed
ELSE tween IF and ELSE) (after ELSE).
|
B
IEND IEND
gEgCD}LTIONAL IF (802) If the operand bit is ON, the instructions between IF(802) and ELSE(803) will BIOCk_ program
BRANCHING B be executed. If the operand bit is OFF, the instructions between ELSE(803) Required
) and IEND(804) will be executed.
IF |B: Bit operand
802
Operand bit
ON?
IF R (IF NOT R) YES
A
"A" executed (be "B" executed
ELSE tween IF and ELSE). (after ELSE).
|
B
IEND IEND
CONDITIONAL IF (802) NOT The instructions between IF(802) and ELSE(803) will be executed and if the | Block program
BLOCK B operand bit is ON, the instructions be ELSE(803) and IEND(804) will be exe- | Required
BRANCHING cuted is the operand bit is OFF.
(NOT) B: Bit operand
IF NOT
802
CONDITIONAL If the ELSE(803) instruction is omitted and the operand bit is ON, the instruc- | Block program
BLOCK tions between IF(802) and IEND(804) will be executed Required
BRANCHING
(ELSE)
ELSE
803
CONDITIONAL If the operand bit is OFF, only the instructions after IEND(804) will be exe- Block program
BLOCK cuted. Required
BRANCHING
END
IEND
804

142




Block Programming I nstructions Section 3-30
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
\CI)VXIIETCYCLEAND WAIT(805) If the execution condition is ON for WAIT(805), the rest of the instruction in BIOCk_ program
WAIT the block program will be skipped. Required
805 Execution Execution Execution
condition  condition condition
OFF OI‘:F ON
— ———BPRG " /
executed. ;| I
A
;o L
Execution i / | / "B" executed.
condition ! / ! /
i ; P
WAIT Lo b
B E I” i I”
BEND Ll |/
C ”l” n ’Illl n IICII eXeCUted
| executed. |/ executed.
%—J
Wait
ONE CYCLE AND WAIT(805) B If the operand bit is OFF (ON for WAIT NOT(805)), the rest of the instructions | Block program
WAIT in the block program will be skipped. In the next cycle, none of the block pro- | Required
WAIT |B: Bit operand gram will be executed except for the execution condition for WAIT(805) or
805 WAIT(805) NOT. When the execution condition goes ON (OFF for WAIT(805)
NQOT), the instruction from WAIT(805) or WAIT(805) NOT to the end of the
program will be executed.
ONE CYCLE AND WAIT(805) NOT B If the operand bit is OFF (ON for WAIT NOT(805)), the rest of the instructions | Block program
WAIT (NOT) in the block program will be skipped. In the next cycle, none of the block pro- Required
WAIT NOT |B: Bit operand gram will be executed except for the execution condition for WAIT(805) or
805 WAIT(805) NOT. When the execution condition goes ON (OFF for WAIT(805)
NQOT), the instruction from WAIT(805) or WAIT(805) NOT to the end of the
program will be executed.
TIMER WAIT TIMW(813) Delays execution of the rest of the block program until the specified time has BIOCk_ program
TIMW N elapsed. Execution will be continued from the next instruction after TIMW/(813) | Required
813 SV when the timer times out.
(BCD) N: Timer number
SV: Set value BPRG
TIMWX | TIMWX(816) ‘
816 N A" A
( (Binary) S\V] A executed.. = oo
CS1-H, CJ1-H . S o
i I N: Timer number S S
CJIM, or CSID | oy get value S /
only) TIMW N sv / ; |
S preset. /[Time elaésed.
B : ,’/ L "B" executed.
BEND
"C" executed.
C

143



Block Programming I nstructions Section 3-30
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
COUNTER WAIT CNTW(814) Delays execution of the rest of the block program until the specified count BIOCk_ program
CNTW N has been achieved. Execution will be continued from the next instruction Required
814 SV after CNTW(814) when the counter counts out.
BCD
(BCD) N: Counter ————- BPRG
number
SV: Set value
I:  Count input 4 .
npn S o
A executed. /' = /o
CNTWX | CNTWX(817) S S
817 N TIMW N sV / /
(Binary) sv s preset. K
(CS1-H, CJ1-H, R / /" [Time elapsed|
CJ1M, or CS1D ry ry [Time elapsed]
only) | N: Counter B LS v
number v L "B" executed.
SV: Set value BEND i f
I:  Countinput
"c" "C" "C" executed.
c executed. | executed.
?III\(E‘ERS\IIDVI/EAIIE'IP TMHW(815) Delays execution of the rest of the block program until the specified time has BIOCk_ program
N elapsed. Execution will be continued from the next instruction after Required
TMHW 5\ TMHW(815) when the timer times out. SV = 0 to 99.99 s
815 |N: Timer number
(BCD) |SV: Set value |} BPRG
TMHWX | TMHWX(818)
818 N \ ,
(Binary) . " o
(CS1-H, CJ1-H, Sv A AT .
CJ1M, or CS1D executed: s
only | N: Timer number / ! /' i
SV: Set value TMHW N sv /. /
S \ pre,s’et. ," Time elapsed.
B ' L "B" executed.
BEND
"C" executed.
C

144




Block Programming I nstructions Section 3-30
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
LOOP LOOP(809) designates the beginning of the loop program. Block program
LOOP Required
809
Execution Execution Execution Execution
condition condition condition condition
ON OFF OFF OFF
—— ——1 BPRaG
A
LOOP N N g A
8
Execution condition s s
LEND / /
% Loop repeated
BEND
LEND LEND(810) LEND(810) or LEND(810) NOT specifies the end of the loop. When Block program
LEND LEND(810) or LEND(810) NOT is reached, program execution will loop back | Required
810 to the next previous LOOP(809) until the operand bit for LEND(810) or
LEND(810) NOT turns ON or OFF (respectively) or until the execution condi-
tion for LEND(810) turns ON.
LEND LEND (810) If the operand bit is OFF for LEND(810) (or ON for LEND(810) NOT), Block program
LEND B execution of the loop is repeated starting with the next instruction after Required
810 _ _. LOOP(809). If the operand bit is ON for LEND(810) (or OFF for LEND(810)
B: Bit operand NOT), the loop is ended and execution continues to the next instruction after
LEND(810) or LEND(810) NOT.
Operand Operand Operand Operand
bit ON  bit OFF  bit OFF  bit OFF
—— — BPRG
A
LOOP N :,7“"_":,_’ )
B
LEND R (LEND NOTR)
N N, Y' """" o
C
Loop repeated
BEND
Note The status of the operand bit would be reversed for
LEND(810) NOT.
LEND NOT LEND(810) NOT LEND(810) or LEND(810) NOT specifies the end of the loop. When Block program
LEND NOT LEND(810) or LEND(810) NOT is reached, program execution will loop back | Required
810 |B: Bit operand to the next previous LOOP(809) until the operand bit for LEND(810) or
LEND(810) NOT turns ON or OFF (respectively) or until the execution condi-
tion for LEND(810) turns ON.

145



Text String Processing | nstructions

Section 3-31

3-31 Text String Processing Instructions

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

MOV STRING

MOV$
@MOV$

664

MOV$(664)
S
D

S: 1st source
word

D: 1st destination
word

Transfers a text string.

S

[ellullelbd
c|mo|m
[o]lullelb=
c|mo|wm

Output
Required

CONCATENATE
STRING
+$
@+$
656

+$(656)
St
S2
D

S1: Text string 1
S2: Text string 2
D: First
destination word

Links one text string to another text string.

S1 + 82

Output
Required

GET STRING
LEFT

LEFTS$
@LEFT$

652

LEFT$(652)
S1
S2
D

S1: Text string
first word

S2: Number of
characters

D: First
destination word

Fetches a designated number of characters from the left (beginning) of a text
string.

S2| 00 ! 04

}/ . D-

S1.

o>
lw]les]

c|m|O(>
c|mjo|m

Output
Required

GET STRING
RIGHT

RGHT$
@RGHT$

653

RGHT$(653)
S1
S2
D

S1:Text string
first word

S2: Number of
characters

D: First
destination word

Reads a designated number of characters from the right (end) of a text string.

S1 A s2[ 00 I 03 |

NUL

Output
Required

GET STRING
MIDDLE
MID$
@MID$
654

MID$(654)
S
S2
S3

D

S1: Text string
first word

S2: Number of
characters

S3: Beginning
position

D: First
destination word

Reads a designated number of characters from any position in the middle of a
text string.

$2| 00 06

Cle|x[m

NUL

S$2| 00 05

Output
Required

146



Text String Processing I nstructions

Section 3-31

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

FIND IN STRING

FIND
@FIND$

660

FIND$(660)
S
S2
D

S1: Source text
string first word
S2: Found text
string first word
D: First
destination word

Finds a designated text string from within a text string.

Found data

S1 -

D -

"-:32 N

c|m|O(>
c|mjo|m

€ 1 NUL |

00

03

Output
Required

STRING LENGTH

LEN$
@LENS$
650

LEN$(650)
S
D

S: Text string first
word
D: 1st destination
word

Calculates the length of a text string.

81—

1
3
5

4
NUL

2 }/—'D

Output
Required

REPLACE IN
STRING

RPLC$
@RPLCS$

661

RPLC$(661)
S
S2
S3
S4
D

S1: Text string
first word

S2: Replacement
text string first
word

S3: Number of
characters

S4: Beginning
position

D: First
destination word

Replaces a text string with a designated text string from a designated position.

S3

S1.,

ACN

00 04

AN o

s4

[ K I NUL |

C|T|X|O|>

C(—|D|O|w

N

00 i 05

Output
Required

DELETE STRING

DEL$
@DEL$
658

DEL$(658)
S1
S2
S3

D

S1: Text string
first word

S2: Number of
characters

S3: Beginning
position

D: First
destination word

Deletes a designated text string from the middle of a text string.

Number of characters to be
deleted (designated by S2).

s1 -

O[>
)

Z

S3

Do

c|T|of>

NUL

00 05

Output
Required

147



Text String Processing | nstructions

Section 3-31

Instruction
Mnemonic
Code

Symbol/Operand

Function

Location

Execution
condition

EXCHANGE
STRING

XCHG$
@XCHG$

665

——XCHG$(665)
Ex1
Ex2

Ex1:1st
exchange word 1
Ex2: 1st
exchange word 2

Replaces a designated text string with another designated text string.

B

A
Ex1 NUT

NUL

Ex2 [9]

NUL

NUL

Ex1

[¢]

D

NUL

NUL

A

NUL

NUL

Output
Required

CLEAR STRING

CLR$
@CLR$

666

CLR$(666)
S

S: Text string first
word

Clears an entire te xt str ing with NUL (00 hex).

S A

B

C

D

NUL

NUL

—_—

S

NUL

NUL

NUL

NUL

NUL

NUL

Output
Required

INSERT INTO
STRING

INS$
@INS$

657

INS$(657)
S1
52
S3

D

S1:Base text
string first word
S2: Inserted text
string first word
S3: Beginning
position

D: First
destination word

Deletes a designated text string from the middle of a text string.

S1 -

S2 -

-S3 |

00

06

m|O| >

(| ®|

c|OmO[>
C|IT|™M(O| 3@
B

/ Inserted
characters

NUL

NUL

Output
Required

String

Comparison
LD, AND, OR +
=$, <>$, <$, <=8,
>$, >=$
670 (=%)
671 (<>$)
672 (<$)
673 (<=9%)
674 (>$)
675 (>=9%)

LD

Symbol
S1
S2

AND

Symbol
S1
S2

OR

Symbol
S1
S2

S1: Text string 1
S2: Text string 2

Sting comparison instructions (=$, <>$, <$, <=$, >$, >=$) compare two text
strings from the beginning, in terms of value of the ASCII codes. If the result of
the comparison is true, an ON execution condition is created for a LOAD, AND,

or OR.

LD: Not
required
AND, OR:
Required

148



Task Control I nstructions Section 3-32
3-32 Task Control Instructions
Instruction Symbol/Operand Function Location
Mnemonic Execution
Code condition
TASK ON pp Output
— Makes the specified task executable.
TKON TKON(820) P Required
@TKON - ) . ,
820 N The specified task's task number  The specified task's task number
is higher than the local task's task is lower than the local task's task
N: Task number number (m<n). number (m>n).
Task m l Task m I
[ TkoN O .
n | i
i U | Be
1 ! comes
END Seeomes | END | | | execut
able in i 1 able in
thatcycle.| v . _._ 1 | the next
e P ~d cycle.
Task n \ Task n \
CH |- 1 TKON
n
END END
TASK OFF P ; Output
— Puts the specified task into standby status.
TKOF TKOF(821) P y Required
@TKOF N The specified task's task num The specified task's task num
821 ber is higher than the local ber is lower than the local

N: Task number

task's task number (m<n).

task's task number (m>n).

Task m l Task m I
—— TKOF . -
n
In stand- In stand-
by status END by status
that the next
cycle. cycle.
Task n \ Task n \
(OH - ] TKoF
i i n
i i
1 END i END
i e i
R -1 =
i i

149



Task Control Instructions Section 3-32

150



This section describes the operation of tasks.

4-1

4-2

4-3

Task FEAtUrES. . . . .ot
A-1-1  OVEIVIBIW. o ittt e et e e e e e e
4-1-2  Tasksand Programs .. ......couiiin i
4-1-3 BasicCPU UnitOperation .. .........c.couiiiniininannann.
4-1-4  TYPeSOf TasKS .« vvi ettt e e e
4-1-5  Task Execution Conditionsand Settings . ....................
4-1-6 CyclicTask Status. . . ..o ve i e e
4-1-7  StausTransitions . ... ..o
USING TaSKS .« v v vttt ettt ettt et e
4-2-1 TASKONandTASK OFF. . ... ..ot
4-2-2  Task Instruction Limitations. ............. ...,
4-2-3 FlagsRelatedtoTasks .. ...
4-2-4  DesigniNg TasKS . .« v v v et
4-2-5 Global SUbroutings. . . ...t
Interrupt Tasks. . . ..ot
4-3-1 Typesof Interrupt TaskS . . .. ..o ei i
4-3-2  Interrupt Task Priority. .. ...
4-3-3  Interrupt Task FlagsandWords . . ........... ... .. oot
4-3-4  Application Precautions . .. ......covi i e
Programming Device Operationsfor Tasks .. ........ .. ...
4-4-1 UsingMultipleCyclicTasks. . ...
4-4-2  Programming Device Operations. ... .......ooiiiiieen...

SECTION 4

152
152
153
154
156
158
159
160
161
161
164
165
169
170
171
171
178
179
180
183
183
183

Tasks

151



Task Features Section 4-1

4-1 Task Features

4-1-1 Overview

CS/CJ-series control operations can be divided by functions, controlled
devices, processes, developers, or any other criteria and each operation can
be programmed in a separate unit called a “task.” Using tasks provides the fol-
lowing advantages:

1,2,3... 1. Programs can be developed simultaneously by several people.

Individually designed program parts can be assembled with very little effort
into a single user program.

2. Programs can be standardized in modules.

More specifically, the following Programming Device functions will be com-
bined to develop programs that are standalone standard modules rather
than programs designed for specific systems (machines, devices). This
means that programs developed separately by several people can be
readily combine.

» Programming using symbols

 Global and local designation of symbols

» Automatic allocation of local symbols to addresses
3. Improved overall response.

Overall response is improved because the system is divided into an overall
control program as well as individual control programs, and only specific
programs will be executed as needed.

4. Easy revision and debugging.

» Debugging is much more efficient because tasks can be developed
separately by several people, and then revised and debugged by indi-
vidual task.

» Maintenance is simple because only the task that needs revising will
be changed in order to make specification or other changes.

» Debugging is more efficient because it is easy to determine whether
an address is specific or global and addresses between programs only
need to be checked once during debugging because symbols are des-
ignated globally or locally and local symbols are allocated automatical-
ly to addresses through Programming Devices.

5. Easy to switch programs.

A task control instruction in the program can be used to execute product-
specific tasks (programs) when changing operation is necessary.

152



Task Features

Section 4-1
Easily understood user programs.
Programs are structured in blocks that make the programs much simpler
to understand for sections that would conventionally be handled with in-
structions like jump.
Task C Task A

(Program A)
—
-

(Program B)

END

4-1-2 Tasks and Programs

Note

1.

» Up to 288 programs (tasks) can be controlled. Individual programs are
allocated 1:1 to tasks. Tasks are broadly grouped into the following types:

Cyclic tasks
Interrupt tasks

Up to 32 cyclic tasks and 256 interrupt tasks for a maximum total of 288
tasks can be created. Each task has its own unique number ranging from
0 to 31 for cyclic tasks and 0 to 255 for interrupt tasks.

With the CS1-H, CJ1-H, CJ1M, or CS1D CPU Units, interrupt task (inter-
rupt task numbers 0 to 255) can be executed as cyclic tasks by starting
them with TKON. These are called “extra cyclic tasks.” If extra cyclic tasks
are used, then the total number of cyclic tasks that can be used is 288.

CJ1 CPU Units do not currently support I/O interrupt tasks and external in-
terrupt tasks. The maximum number of tasks for a CJ1 CPU Unit is thus
35, i.e., 32 cyclic tasks and 3 interrupt tasks. The total number of programs
that can be created and managed is also 35.

Each program allocated to a task must end with an END(001) instruction. I/O
refreshing will be executed only after all task programs in a cycle have been
executed.

153



Task Features

Section 4-1

4-1-3 Basic CPU Unit Operation

154

Executed in order starting l JJ Interrupt task 5 l
at the lowest number. -

The CPU Unit will execute cyclic tasks (including extra cyclic tasks, CS1-H,
CJ1-H, CJ1M, or CS1D CPU Unit only) starting at the lowest number. It will
also interrupt cyclic task execution to execute an interrupt task if an interrupt
occurs.

.

Cyclic task 0

Cyclic task 1 ‘
Interrupt
- occurs.
ONIF—
*1: END other than that for the final
task. Clears ER, Equals, and N Flags.
Cyclic task n l
*2: END for the final task. Clears ER, Equals,
and N Flags, and then refreshes 1/0O.
1/0 refresh
Peripheral processing

.

Note All Condition Flags (ER, CY, Equals, AER, etc.) and instruction conditions

(interlock ON, etc.) will be cleared at the beginning of a task. Therefore Condi-
tion Flags cannot be read nor can INTERLOCK/INTERLOCK CLEAR (IL/ILC)
instructions, JUMP/JUMP END (JMP/JME) instructions, or SUBROUTINE
CALL/SUBROUTINE ENTRY (SBS/SBN) instructions be split between two
tasks.

With a CS1-H, CJ1-H, CJ1M, or CS1D CPU Unit, interrupt task can be exe-
cuted as cyclic tasks by starting them with TKON. These are called “extra
cyclic tasks.” Extra cyclic tasks (interrupt task numbers 0 to 255) are executed



Task Features Section 4-1

starting at the lowest task number after execution of the normal cyclic task
(celiac task numbers 0 to 31) has been completed.

Cyclic task 0

-

oL

Executed in order starting at END
lowest number of the cyclic tasks. l

> Normal cyclic tasks
Cyclic task n

41

k

o

Extra cyclic ta

-

Executed in order starting at lowest 10—
number of the extra cyclic tasks. END

l

Extra cyclic task m

n

]

> Extra cyclic tasks

1/0 refresh

Peripheral
processing

(II Bl

155



Task Features

Section 4-1

4-1-4 Types of Tasks

Cyclic Tasks

Interrupt Tasks

Note

Note

Power OFF Interrupt Task

Note

Scheduled Interrupt Tasks

I/O Interrupt Tasks

156

Note

Tasks are broadly classified as either cyclic tasks or interrupt tasks. Interrupt
tasks are further divided into power OFF, scheduled, 1/0 (CS Series only), and
external interrupt tasks (CS Series only). Interrupt tasks can also be executed
as extra cyclic tasks.

With the CS1-H, CJ1-H, CJ1M, or CS1D Units, interrupt task can be executed
as cyclic tasks by starting them with TKON. These are called “extra cyclic
tasks.”

A cyclic task that is READY will be executed once each cycle (from the top of
the program until the END(001) instruction) in numerical order starting at the
task with the lowest number. The maximum number of cyclic tasks is 32.
(Cyclic task numbers: 00 to 31).

With the CS1-H, CJ1-H, CJ1M, or CS1D CPU Units, interrupt task (interrupt
task numbers 0 to 255) can be executed as cyclic tasks just like normal cyclic
tasks (task numbers 0 to 31). If extra cyclic tasks are used, then the total num-
ber of cyclic tasks that can be used is 288.

An interrupt task will be executed if an interrupt occurs even if a cyclic task
(including extra cyclic tasks) is currently being executed. The interrupt task
will be executed using any time in the cycle, including during user program
execution, 1/O refreshing, or peripheral servicing, when the execution condi-
tion for the interrupt is met.

With the CS1-H, CJ1-H, CJ1M, or CS1D CPU Units, interrupt task can be
executed as cyclic tasks. (CS1D CPU Units do not support interrupts. With
CS1D CPU Units, interrupt tasks can be used only as extra cyclic tasks.)

The built-in interrupt inputs and high-speed counter inputs on a CJ1M CPU
Unit can be used to activate interrupt tasks. Refer to the CJ Series Built-in I/O
Operation Manual for details.

The power OFF interrupt task will be executed if CPU Unit power is shut OFF.
Only one power OFF interrupt task can be programmed (Interrupt task num-
ber: 1).

The power OFF interrupt task must execute before the following time elapses
or the task will be forced to quit.

10 ms — (Power OFF detection delay time)
The power OFF detection delay time is set in the PLC Setup.

A scheduled interrupt task will be executed at a fixed interval based on the
internal timer of the CPU Unit. The maximum number of scheduled interrupt
tasks is 2 (Interrupt task numbers: 2 and 3).

The SET INTERRUPT MASK (MSKS(690)) instruction is used to set the inter-
rupt for a scheduled interrupt task. Interrupt times can be set in 10-ms or 1.0-
ms increments in the PLC Setup.

An 1/O interrupt task will be executed if an Interrupt Input Unit input turns ON.
The maximum number of 1/O interrupt tasks is 32 (Interrupt task numbers: 100
to 131). The Interrupt Input Unit must be mounted to the CPU Rack. For CJ1-
H CPU Units, the Unit must be connected as one of the five Units next to the
CPU Unit (slots 0 to 4). For CJ1M CPU Units, the Unit must be connected as



Task Features

Section 4-1

External Interrupt Tasks

Extra Cyclic Tasks (CS1-H,
CJ1-H, CJ1IM, or CS1D

CPU Units Only)

Note

one of the three Units next to the CPU Unit (slots 0 to 2). I/O Interrupt Units
mounted elsewhere cannot be used to request execution of 1/O interrupt
tasks.

I/O interrupts are not supported by CJ1 CPU Units.

An external interrupt task will be executed when requested by an Special 1/0
Unit, CPU Bus Unit, or Inner Board (CS Series only) user program. Special
I/O Units and CPU Bus Units, however, must be mounted to the CPU Rack.
The Special I/O Unit or CPU Bus Unit must be mounted to the CPU Rack. For
CJ1-H CPU Units, the Unit must be connected as one of the five Units next to
the CPU Unit (slots 0 to 4). For CJ1M CPU Units, the Unit must be connected
as one of the three Units next to the CPU Unit (slots 0 to 2). Units mounted
elsewhere cannot be used to generate external interrupts.

The maximum number of external interrupt tasks is 256 (Interrupt task num-
bers: 0 to 255). If an external interrupt task has the same number as a power
OFF, scheduled, or I/O interrupt task, the interrupt task will be executed for
either condition (the two conditions will operate with OR logic) but basically
task numbers should not be duplicated.

I/O interrupts are not supported by CJ1 CPU Units.

An interrupt tasks can be executed every cycle, just like the normal cyclic
tasks. Extra cyclic tasks (interrupt task numbers 0 to 255) are executed start-
ing at the lowest task number after execution of the normal cyclic task (cyclic
task numbers 0 to 31) has been completed. The maximum number of extra
cyclic tasks is 256 (Interrupt task numbers: 0 to 255). Cycle interrupt tasks,
however, are different from normal cyclic tasks in that they are started with the
TKON(820)instruction. Also, the TKON(820)and TKOF instructions cannot be
used in extra cyclic tasks, meaning that normal cyclic tasks and other extra
cyclic tasks cannot be controlled from within an extra cyclic task.

If an extra cyclic task has the same number as a power OFF, scheduled, or I/O
interrupt task, the interrupt task will be executed for either condition (the two
conditions will operate with OR logic). Do not use interrupt tasks both as nor-
mal interrupt tasks and as extra cyclic tasks.

1. The power OFF interrupt task in 1) above has priority and will be executed
when power turns OFF even if another interrupt task is being executed.

2. If another interrupt task is being executed when a scheduled, /O, or exter-
nal interrupt occurs, then these interrupt tasks will not be executed until the
interrupt task that is currently being executed has been completed. If mul-
tiple interrupts occur simultaneously, then interrupt tasks will be executed
sequentially starting at the lowest interrupt task number.

3. The differences between normal cyclic tasks and extra cyclic tasks are list-
ed in the following table.

Item Extra cyclic tasks Normal cyclic tasks
Activating at startup Setting is not possible. Set from CX-Programmer
Using TKON/TKOF Not possible. Possible.
instructions
Task Flags Not supported. Supported. (Cyclic task

numbers 00 to 31 corre-
spond to Task Flags TK0O to
TK31))

157



Task Features

Section 4-1

Item

Extra cyclic tasks

Normal cyclic tasks

(A20014)

Initial Task Execution
Flag (A20015) and
Task Start Flag

Not supported.

Supported.

Index (IR) and data
(DR) register values

the beginning of each
cycle are undefined.

not be read.

Not defined when task is
started (same as normal
interrupt tasks). Values at

Always set values before
using them. Values set in
the previous cycle can-

Undefined at the beginning
of operation. Values set in
the previous cycle can be
read.

4. The CJ1 CPU Units do not support I/O interrupt and external interrupt

tasks.

4-1-5 Task Execution Conditions and Settings

The following table describes task execution conditions, related settings, and
status.

Task

No.

Execution condition

Related Setting

Cyclic tasks

Oto 31

Executed once each cycle if
READY (set to start initially or
started with the
TKON(820)instruction) when the
right to execute is obtained.

None

00 to 31

tasks 100 to
131

Interrupt | Power OFF interrupt task | Interrupt Executes when CPU Unit power |« Power OFF interrupt enabled
tasks task 1 shuts OFF. in PLC Setup.
Scheduled interrupt tasks | Interrupt Executes once every time the e The scheduled interrupt time
Oand1 tasks 2 and | preset period elapses according is set (0 to 9999) through the
3 to the internal timer of CPU Unit. SET INTERRUPT MASK
instruction (MSKS).
e Scheduled interrupt unit
(10ms or 1.0 ms) is set in
PLC Setup.
I/O interrupt tasks Interrupt Executes when aninputonan |« Masks for designated inputs

Interrupt Input Unit on the CPU
Rack turns ON.

are canceled through the
SET INTERRUPT MASK
instruction (MSKS).

External interrupt tasks Interrupt Executes when requested by a | None (always enabled)
0to 255 tasks 0 to user program in a Special I/O
255 Unit or CPU Bus Unit on the
CPU Rack or by a user program
in an Inner Board (CS Series
only).
Extra cyclic tasks (CS1-H, CJ1-H, or |Interrupt Executed once each cycle if None (always enabled)
CJ1M CPU Units only) tasks O to READY (started with the
255 TKON(820)instruction) when the

right to execute is obtained.

Note 1.

158

The Interrupt Input Unit must be mounted to the CPU Rack. For CJ1-H
CPU Units, the Unit must be connected as one of the five Units next to the
CPU Unit (slots 0 to 4). For CJ1M CPU Units, the Unit must be connected
as one of the three Units next to the CPU Unit (slots 0 to 2). I/O Interrupt
Units mounted elsewhere cannot be used to request execution of I/O inter-

rupt tasks

The Special I/O Unit or CPU Bus Unit must be mounted to the CPU Rack.
For CJ1-H CPU Units, the Unit must be connected as one of the five Units



Task Features

Section 4-1

next to the CPU Unit (slots 0 to 4). For CJ1M CPU Units, the Unit must be
connected as one of the three Units next to the CPU Unit (slots 0 to 2).
Units mounted elsewhere cannot be used to generate external interrupts.

3. The number of cyclic tasks and interrupt tasks are limited when the mem-
ory clear operation is performed with a Programming Console.

* Only cyclic task 0 can be created.
Cyclic tasks 1 to 31 cannot be created with a Programming Console,
but these tasks can be edited if they were already created with CX-
Programmer.

* Only interrupt tasks 1, 2, 3, and 100 through 131 (CS Series only) can
be created.
Interrupt tasks 0, 4 through 99, and 132 through 255 cannot be created
with a Programming Console (except that 140 through 143 can be cre-
ated for CJ1M CPU Units), but these tasks can be edited if they were
already created with CX-Programmer.

4-1-6 Cyclic Task Status

Disabled Status (INI

READY Status

Instruction-activated
Tasks

Operation-activated Tasks

Note

RUN Status

Standby Status

This section describes cyclic task status, including extra cyclic tasks (sup-
ported by CS1-H, CJ1-H, CJ1M, or CS1D CPU Units only).

Cyclic tasks always have one of four statuses: Disabled, READY, RUN (exe-
cutable), and standby (WAIT).

A task with Disabled status is not executed. All cyclic tasks have Disabled sta-
tus in PROGRAM mode. Any cycle task that shifted from this to another status
cannot return to this status without returning to PROGRAM mode.

A task attribute can be set to control when the task will go to READY status.
The attribute can be set to either activate the task using the TASK ON instruc-
tion or when RUN operation is started.

A TASK ON (TKON(820)) instruction is used to switch an instruction-activated
cyclic task from Disabled status or Standby status to READY status.

An operation-activated cyclic task will switch from Disabled status to READY
status when the operating mode is changed from PROGRAM to RUN or
MONITOR mode. This applies only to normal cyclic tasks.

A Programming Device can be used to set one or more tasks to go to READY
status when operation is started for task numbers 0 through 31. The setting,
however, is not possible with extra cyclic tasks.

A cyclic task that is READY will switch to RUN status and be executed when
the task obtains the right to execute.

A TASK OFF (TKOF(821)) instruction can be used to change a cyclic task
from Disabled status to Standby status.

159



Task Features

Section 4-1

4-1-7 Status Transitions

Activated at the start of
operation (See note 2) or the
TKON(820) instruction

INI (Disabled) status

Right to execute obtained.

READY status

TKON(820) instruction

Note

RUN status

Standby status

TKOF(821) instruction (See note 1.)

A task in RUN status will be put into Standby status by the TKOF(821) in-
struction even when the TKOF(821) instruction is executed within that task.

Activation at the start of operation is possible for normal cyclic tasks only.
It is not possible for extra cyclic tasks.

Standby status functions exactly the same way as a jump (JMP-JME). Output
status for the Standby task will be maintained.

JMP

Jump

A

v

B Standby status
v

C

A

JME

Instructions will not be executed in Standby status, so instruction execution

time will not be increased. Programming that does not need to be executed all
the time can be made into tasks and assigned Standby status to reduce cycle

time.

Conventional program

A

set conditions
B

_‘ Executes under

c

set conditions
D

-—{ }-‘— Executes under

All instructions will
be executed un-

less jumps or other
functions are used.

Reduced cycle time

&

vy

Note Standby status simply means that a task will be skipped during task execu-
tion. Changing to Standby status will not end the program.

160



Us ng Tasks

Section 4-2

4-2 Using Tasks

4-2-1 TASK ON and TASK OFF

Note

Note

The TASK ON (TKON(820)) and TASK OFF (TKOF(821)) instructions switch a
cyclic task (including extra cyclic tasks) between READY and Standby status
from a program.

Extra cyclic tasks are supported only by CS1-H, CJ1-H, CJ1M, or CS1D CPU
Units.

TKON N: Task No. A task will go to READY status when the
- 1 execution condition is ON, and the corre-
N sponding Task Flag will turn ON.
I TKOF N:Task No. A task will go to Standby status when
the execution condition is ON, and the
N corresponding Task Flag will turn OFF.

Note: Task Flags do not work for extra cyclic tasks.

The TASK ON and TASK OFF instructions can be used to change any cyclic
task between READY or Standby status at any time. A cyclic task that is in
READY status will maintain that status in subsequent cycles, and a cyclic task
that is in Standby status will maintain that status in subsequent cycles.

The TASK ON and TASK OFF instructions can be used only with cyclic tasks
and not with interrupt tasks.

At least one cyclic task must be in READY status in each cycle. If there is not
cyclic task in READY status, the Task Error Flag (A29512) will turn ON, and
the CPU Unit will stop running.

161



Us ng Tasks Section 4-2

Example: Cyclic Task I

Cyclic task 0
(READY status

A
TKON 1 at the start of
operation)
B -
4{ t»———JTKON 2 }_
Cyclic task 1
Cc
-_‘ }—TKON 3 1
D Cyclic task 2
4{ TKOF O

+
Cyclic task 3
1) Task 0 will be in 2)Task 1 will go to 3)TaskOwillgoto
READY status at |Cyclic task 0 READY status if Ais  [Cyclic task 0 Standby status if D :Cyclic task 0:
the start of opera- ON, and tasks 2 and 3 is ON.
tion. RV " will remain on Disabled B L
oth ks will : : status.
ther tasks will re- :cyclic task 1: Cyclic task 1 0 : ; Cyclic task 1
1er. task : : ther tasks will remain y
main in Disabled : °~ : in their current status.
status. e v .| T T T v
;Cyclic task 2 éCycIic task 2 ;Cyclic task 2
RS R IR
%Cyclic task 3 ECycIic task 3 ;Cyclic task 3

D READY status

Standby status/Disabled status

Tasks and the Execution Cycle

A cyclic task (including an extra cyclic task) that is in READY status will main-
tain that status in subsequent cycles.

READY sty fomm
Cyclic task 1 | tus at the Cyclic task 1 READY status
start of.Op-
eration
TKON(820) Cyclic task 2 -*'ﬁEADY Cyclic task 2 READY status

l = status l

¥

A cyclic task that is in Standby status will maintain that status in subsequent
cycles. The task will have to be activated using the TKON(820) instruction in
order to switch from Standby to READY status.

162



Us ng Tasks Section 4-2

,—’ Cyclic task 1 [Standby sgat'ﬂ‘s Cyclic task 1 Standby status

TKOF(821) TKON| 820) !
Cyclic task 2 RUN status

RUN status Cyclic task 2

If a TKOF(821) instruction is executed for the task it is in, the task will stop
being executed where the instruction is executed, and the task will shift to
Standby status.

Task 2

H TKOF 2 |-

v

Task execution will
stop here and the task
will shift to Standby
status.

Cyclic Task Numbers and the Execution Cycle (Including Extra Cyclic Tasks)

If task m turns ON task n and m > n, task n will go to READY status the next

cycle.

Example:If task 5 turns ON task 2, task 2 will go to READY status the next
cycle.

If task m turns ON task n and m < n, task n will go to READY status the same

cycle.

Example:If task 2 turns ON task 5, task 5 will go to READY status in the same
cycle.

If task m places task n in Standby status and m > n, will go to Standby status

the next cycle.

Example: If task 5 places task 2 in Standby status, task 2 will go to Standby
status the next cycle.

If task m places task n in Standby status and m < n, task n will go to Standby

status in the same cycle.

Example: If task 2 places task 5 in Standby status, task 5 will go to Standby
status in the same cycle.

Relationship of Tasks to I/O Memory

There are two different ways to use Index Registers (IR) and Data Registers
(DR): 1) Independently by task or 2) Shared by all task (supported by CS1-H,
CJ1-H, CJ1IM, or CS1D CPU Units only).

With independent registers, IR0 used by cyclic task 1 for example is different
from IR0 used by cyclic task 2. With shared registers, IR0 used by cyclic task
1 for example is the same as IR0 used by cyclic task 2.

The setting that determines if registers are independent or shared is made
from the CX-Programmer.

163



Using_] Tasks

Section 4-2

Note

Relationship of Tasks to
Timer Operation

Relationship of Tasks to
Condition Flags

Note

 Other words and bits in /O Memory are shared by all tasks. CIO 001000
for example is the same bit for both cyclic task 1 and cyclic task 2. There-
fore, be very careful in programming any time 1/O memory areas other
than the IR and DR Areas are used because values changed with one
task will be used by other tasks.

I/O memory Relationship to tasks

CIO, Auxiliary, Data Memory and all other mem- | Shared with other tasks.
ory areas except the IR and DR Areas. (See
note 1.)

Index registers (IR) and data registers (DR) (See | Used separately for each task.
note 2.)

1. The current EM bank is also shared by tasks. Therefore if the current EM
bank number is changed with cyclic task 1 for example, the new current EM
bank number will be valid for cyclic task 2 as well.

2. IR and DR values are not set when interrupt tasks (including extra cyclic
tasks) are started. If IR and DR are used in an interrupt task, these values
must be set by the MOVR/MOVRW (MOVE TO REGISTER and MOVE
TIMER/COUNTER PV TO REGISTER) instructions within the interrupt
task. After the interrupt task has been executed, IR and DR will return to
their values prior to the interrupt automatically.

Timer present values for TIM, TIMX, TIMH, TIMHX, TMHH, TMHHX, TIMW,
TIMWX, TMHW, and TMHWX programmed for timer numbers 0000 to 2047
will be updated even if the task is switched or if the task containing the timer is
changed to Standby status or back to READY status.

If the task containing TIM goes to Standby status and is the returned to
READY status, the Completion Flag will be turned ON if the TIM instruction is
executed when the present value is 0. (Completion Flags for timers are
updated only when the instruction is executed.) If the TIM instruction is exe-
cuted when the present value is not yet 0, the present value will continue to be
updated just as it was while the task was in READY status.

» The present values for timers programmed with timer numbers 2048 to
4098 will be maintained when the task is in Standby status.

All Condition Flags will be cleared before execution of each task. Therefore
Condition Flag status at the end of task 1 cannot be read in task 2. With a
CS1-H, CJ1-H, CJ1M, or CS1D CPU Unit, however, CCS(282) and CCL(283)
can be used to read Condition Flag status from another part of the program,
e.g., from another task.

When the status of Condition Flags is monitored from a Programming Con-
sole, the Programming Console will show the flags’ status at the end of the
cycle, i.e., their status at the end of the last task in the cycle.

4-2-2 Task Instruction Limitations
Instructions Required in the Same Task

164

The following instructions must be placed within the same task. Any attempt
to split instructions between two tasks will cause the ER Flag to turn ON and
the instructions will not be executed.

Mnemonic Instruction
JMP/IME JUMP/JUMP END
CJIP/IME CONDITIONAL JUMP/JUMP END
CJIPN/IME CONDITIONAL JUMP NOT/CONDITIONAL JUMP END
JMPO/IJMEQ MULTIPLE JUMP/JUMP END




Us ng Tasks

Section 4-2

Mnemonic Instruction
FOR/NEXT FOR/NEXT
IL/ILC INTERLOCK/INTERLOCK CLEAR
SBS/SBN/RET SUBROUTINE CALL/SUBROUTINE ENTRY/SUBROUTINE

RETURN

MCRO/SBN/RET MACRO/SUBROUTINE ENTRY/SUBROUTINE RETURN
BPRG/BEND BLOCK PROGRAM BEGIN/BLOCK PROGRAM END
STEP S/STEP STEP DEFINE

Instructions Not Allowed in Interrupt Tasks

The following instructions cannot be placed in interrupt tasks. Any attempt to
execute one of these instructions in an interrupt task will cause the ER Flag to
turn ON and the instruction will not be executed.The following instructions can
be used if an interrupt task is being used as an extra task.

Mnemonic Instruction
TKON(820) TASK ON
TKOF(821) TASK OFF
STEP STEP DEFINE
SNXT STEP NEXT
STUP CHANGE SERIAL PORT SETUP
DI DISABLE INTERRUPT
El ENABLE INTERRUPT

The operation of the following instructions is unpredictable in an interrupt task:
TIMER: TIM and TIMX((550), HIGH-SPEED TIMER: TIMH(015) and
TIMHX(551), ONE-MS TIMER: TMHH(540) and TMHHX(552), ACCUMULA-
TIVE TIMER: TTIM(087) and TTIMX(555), MULTIPLE OUTPUT TIMER:
MTIM(543) and MTIMX(554), LONG TIMER: TIML(542) and TIMLX(553),
TIMER WAIT: TIMW(813) and TIMWX(816), HIGH-SPEED TIMER WAIT:
TMHW(815) and TMHWX(817), PID CONTROL: PID(190), FAILURE POINT
DETECTION: FPD(269), and CHANGE SERIAL PORT SETUP: STUP(237).

The following instructions cannot be used in the power OFF interrupt task
(they will not be executed even if they are used and the Error Flag will not turn
ON):

READ DATA FILE: FREAD(700), WRITE DATA FILE: FWRIT(701), NET-
WORK SEND: SEND(090), NETWORK RECEIVE: RECV(098), DELIVER
COMMAND: CMND(490), PROTOCOL MACRO: PMCR(260).

4-2-3 Flags Related to Tasks

Flags Related to Cyclic Tasks

Task Flags
(TKOO to TK31)

Task 3 |

The following flag work only for normal cyclic tasks. They do not work for extra
cyclic tasks.

A Task Flag is turned ON when a cyclic task in READY status and is turned
OFF when the task is in Disabled (INI) or in Standby (WAIT) status. Task num-
bers 00 to 31 correspond to Task Flags TKOO to TK31.

+——— Cycle | ¢ Cycle Pe—f . Cycle —»

READY READY Standby

Task Flag for task 3

165



Using_] Tasks

Section 4-2

Note

Initial Task Execution Flag

(A20015)

Task Start Flag (A20014,
CS1-H, CJ1-H, CJ1IM, or
CS1D CPU Units only)

166

Note

Task Flags are used only with cyclic tasks and not with interrupt tasks. With
an interrupt task, A44115 will turn ON if an interrupt task executes after the
start of operation, and the number of the interrupt task that required for maxi-
mum processing time will be stored in two-digit hexadecimal in A44100 to
A44107.

The Initial Task Execution Flag will turn ON when cyclic tasks shift from Dis-
abled (INI) to READY status, the tasks obtain the right to execute, and the
tasks are executed the first time. It will turn OFF when the first execution of the
tasks has been completed.

Ready Ready
Disabled | I i | I
Taskn .. |s§ . € e ‘I‘D|sa‘b[ed‘ S
Initial Task
Execution Flag |_|

The Initial Task Execution Flag tells whether or not the cyclic tasks are being
executed for the first time. This flag can thus be used to perform initialization
processing within the tasks.

Initial Task Execution Flag

A20015

Initializing
__{ processing

h_//—/

Even though a Standby cyclic task is shifted back to READY status through
the TKON(820) instruction, this is not considered an initial execution and the
Initial Task Execution Flag (20015) will not turn ON. The Initial Task Execution
Flag (20015) will also not turn ON if a cyclic task is shifted from Disabled to
RUN status or if it is put in Standby status by another task through the
TKOF(821) instruction before the right to execute actually is obtained.

The Task Start Flag can be used to perform initialization processing each time
the task cycle is started. The Task Start Flag turns OF whenever cycle task
status changes from Disabled (INI) or Standby (WAIT) status to READY status
(whereas the Initial Task Execution Flag turns ON only when status changes
from Disabled (INI) to READY).

Ready Ready

Disabled | I Disabled | I
Task n
Task Start Flag |_| |_|

The Task Start Flag can be used to perform initialization processing whenever
a task goes from Standby to RUN status, i.e., when a task on Standby is
enabled using the TRON(820) instruction.




Us ng Tasks

Section 4-2

Flags Related to All Tasks

Task Error Flag (A29512)

Task Number when
Program Stopped (A294)

Examples of Tasks

Task Start Flag
A20014

}7

Initialization
processing

l

The Task Error Flag will turn ON if one of the following task errors occurs.
 No cyclic tasks (including extra cyclic tasks) are READY during a cycle.

» The program allocated to a cyclic task (including extra cyclic tasks) does
not exist. (This situation will not occur when using the CX-Programmer or
a Programming Console.)

» No program is allocated to an activated interrupt task.

The type of task and the current task number when a task stops execution
due to a program error will be stored as follows:

Type

A294

Cyclic task

0000 to 001F Hex (correspond to task numbers 0 to 31)

Interrupt task

8000 to 80FF Hex (correspond to interrupt task numbers 0 to 255)

This information makes it easier to determine where the fatal error occurred,
and it will be cleared when the fatal error is cleared. The program address
where task operation stopped is stored in A298 (rightmost bits of the program
address) and in A299 (leftmost bits of the program address).

An overall control task that is set to go to READY status at the start of opera-
tion is generally used to control READY/Standby status for all other cyclic
tasks (including extra cyclic tasks). Of course, any cyclic task can control the
READY/Standby status of any other cyclic task as required by the application.

167




Us ng Tasks Section 4-2

A
From Program Mode to Operating or Monitor Mode. / TKON 1 —
I
Cyclic task 0 with the startup at B
the start of operation attribute TKON 2 _
(overall control task)
C
l TKON 3 L
D
TKOF 1 ]
Cyclic task 1 Cyclic task 2 Cyclic task 3
E
% TKOF 2 —
Tasks Separated by Function Tasks Separated by Controlled Section

A-section control
task

A

Conveyor task

QOverall control task

A 4

Overall control task »

Error monitoring

B-section control

task task
» MMI task -
C-section control
task
.| Communications
7| task
3| Analog processing
"\ task
Tasks Separated by Product Tasks Separated by Developer
Product A task Developer A task
Overall control task
Product B task toa‘éﬁra” control Lyl y!  Developer B task
Product C task L Developer C task

Tasks Separated by Process

Machining task

Overall control task

Assembly task

Conveyor task

Combinations of the above classifications are also possible, e.g., classifica-
tion by function and process.

168



Us ng Tasks

Section 4-2

4-2-4  Designing Tasks

—_—
»

Order priority

External 1/10

1,2,3...

We recommend the following guidelines for designing tasks.

1.

Use the following standards to study separating tasks.

a) Summarize specific conditions for execution and non-execution.
b) Summarize the presence or absence of external I/O.

¢) Summarize functions.

Keep data exchanged between tasks for sequence control, analog
control, man-machine interfacing, error processing and other pro-
cesses to an absolute minimum in order to maintain a high degree
of autonomy.

d) Summarize execution in order of priority.
Separate processing into cyclic and interrupt tasks.

Breakdown by function
/

Interrupt /

"4

Input
proces-
sing

Overall | Error processing

Output —
processing

control
(may in- | Sequence control

¥clude error
processing
»/in some

[Analog control

External outputs

cases)

I Man-machine interfacing

2.

Be sure to break down and design programs in a manner that will ensure
autonomy and keep the amount of data exchanged between tasks (pro-
grams) to an absolute minimum.

||| Mmmiecae |
}—Q ¢
T

Generally, use an overall control task to control the READY/Standby status
of the other tasks.

Allocate the lowest numbers to tasks with the highest priority.
Example: Allocate a lower number to the control task than to processing
tasks.

A4

Allocate lower numbers to high-priority interrupt tasks.

A task in READY status will be executed in subsequent cycles as long as
the task itself or another task does not shift it to Standby status. Be sure to
insert a TKOF(821) (TASK OFF) instruction for other tasks if processing is
to be branched between tasks.

Use the Initial Task Execution Flag (A20015) or the Task Start Flag
(A20014) in the execution condition to execution instructions to initialize
tasks. The Initial Task Execution Flag will be ON during the first execution
of each task. The Task Start Flag each time a task enters READY status.

169



Using_] Tasks

Section 4-2

Relationship of Tasks to
Block Programs

8. Assign I/O memory into memory shared by tasks and memory used only
for individual tasks, and then group I/O memory used only for individual
tasks by task.

Up to 128 block programs can be created in the tasks. This is the total number
for all tasks. The execution of each entire block program is controlled from the
ladder diagram, but the instructions within the block program are written using
mnemonics. In other words, a block program is formed from a combination of
a ladder instruction and mnemonic code.

Using a block program makes it easier to write logic flow, such as conditional
branching and process stepping, which can be hard to write using ladder dia-
grams. Block programs are located at the bottom of the program hierarchy,
and the larger program units represented by the task can be split into small
program units as block programs that operate with the same execution condi-
tion (ON condition).

001

. — Block program area 001

Program // 000000
~ - ‘ BPRG
Block program 000 — | 500 e
= . o MOV . | — Block program area 000
- BlOCkprOQramOO1 #0001
D00001
S - SET 000005
Block programn
BEND o
000001 -
@ — | BPRG |

4-2-5 Global Subroutines

170

Global subroutine can be called from more than one task. They are supported
only by CS1-H, CJ1-H, CJ1M, or CS1D CPU Units.

With the CS1 or CJ1 CPU Units, a subroutine in one task cannot be called
from other tasks. With the CS1-H, CJ1-H, CJ1M, or CS1D CPU Units, how-
ever, global subroutines can be created in interrupt task number 0, and these
subroutines can be called from cyclic tasks (including extra cyclic tasks).

The GSBS instruction is used to call a global subroutine. The subroutine num-
ber must be between 0 and 1,023. The global subroutine is defined at the end
of interrupt task number 0 (just before END(001)) between the GSBN and
GRET instructions.

Global subroutines can be used to create a library of standard program sec-
tions that can be called whenever necessary.



| nterrupt Tasks Section 4-3

Cyclic task (including

extra cyclic task) Interrupt task 0
e call
: g GSBN
n n=0to 1,023
Exe- Global subroutine
cution (shared subroutine
used for standard
Return y programming_

— GRET

| — END

Multiple tasks Cyclic task (including
extra cyclic task) /\/
Call
~ —
1l

7Return

f
4-3 Interrupt Tasks

4-3-1 Types of Interrupt Tasks

Interrupt tasks can be executed at any time in the cycle if any of the following
conditions are in effect.

The built-in interrupt inputs and high-speed counter inputs on a CJ1M CPU
Unit can be used to activate interrupt tasks. Refer to the CJ Series Built-in I/O
Operation Manual for details.

Note The CS1D CPU Units do not support interrupts. With the CS1D CPU Units,
interrupt tasks can be used only as extra cyclic tasks.

I/O Interrupts (CS Series The I/O interrupt task will be executed when input to the Interrupt Input Unit is
Only) ON.
Interrupt
Input Unit  CPU Unit
2
2
g P
c ro-
| —N — >> gram
Scheduled Interrupts A scheduled interrupt task will be executed at fixed intervals.
CPU Unit
Fixed interval
Pro-
> gram
a
2
8
c
Power OFF Interrupt The power OFF interrupt task will be executed when power is turned OFF.

171



I nterrupt Tasks

Section 4-3

External Interrupts (CS

Series Only)

Note The execution time for the power OFF task must be less than 10 ms — (Power
OFF delay detection time).

CPU Unit

Power OFF ~ |

Interrupt
—

Pro-
gram

An external interrupt task will be executed when an interrupt is requested by

an Special I/O Unit, CPU Bus Unit, or Inner Board (CS Series only). The Spe-
cial /0 Unit or CJ Bus Unit, however, must be on the CPU Rack to request
execution of an external interrupt task.

List of Interrupt Tasks

Special 1/0 Unit,

CS1 CPU Bus Unit

or Inner Board

CPU Unit

Interrupt

> i

Type Task Execution condition Setting procedure Number of | Application examples
No. interrupts
I/O Inter- 100 to | Input from the Interrupt Use the MSKS (SET INTER- | 32 points Increasing response
rupts 131 Input Unit ON on the RUPT MASK) instruction to speed to specific inputs
00to 31 CPU Rack (See note 1.) |assign inputs from Interrupt
Input Units on the CPU Rack.
Scheduled |2 and 3| Scheduled (fixed inter- Use the MSKS (SET INTER- |2 points Monitoring operating sta-
Interrupts vals) RUPT MASK) instruction to tus at fixed intervals
Oand1 set the interrupt interval. See
Scheduled Interrupt Time
Units in PLC Setup.
Power OFF |1 When power turns OFF | See Power OFF Interrupt 1 point Executing emergency
Interrupt (After the default power | Task and Power OFF Detec- processing when power
OFF detection time + tion Delay Time in PLC shuts OFF.
power OFF detection Setup.
delay time)
External Oto When requested by an None (always valid) 256 points Performing processing
Interrupts | 255 Special I/0O Unit or CPU required by Special /0
0 to 255 Bus Unit on the CPU Units, CPU Bus Units,

Rack or by an Inner
Board (CS Series only)
(See note 2.)

and the Inner Board.

172

Note 1.

The Interrupt Input Unit must be mounted to the CPU Rack. For CJ1-H

CPU Units, the Unit must be connected as one of the five Units next to the
CPU Unit (slots 0 to 4). For CJ1M CPU Units, the Unit must be connected
as one of the three Units next to the CPU Unit (slots 0 to 2). I/O Interrupt
Units mounted elsewhere cannot be used to request execution of I/O inter-
rupt tasks

2. The Special I/0O Unit or CPU Bus Unit must be mounted to the CPU Rack.
For CJ1-H CPU Units, the Unit must be connected as one of the five Units



| nterrupt Tasks

Section 4-3

next to the CPU Unit (slots 0 to 4). For CJ1M CPU Units, the Unit must be
connected as one of the three Units next to the CPU Unit (slots 0 to 2).
Units mounted elsewhere cannot be used to generate external interrupts.

3. CJ1 CPU Units do not support I/O interrupt and external interrupt tasks.

4. The CS1D CPU Units do not support interrupts. With the CS1D CPU Units,
interrupt tasks can be used only as extra cyclic tasks, i.e., no other type of
interrupt task can be used.

I/O Interrupt Tasks: Tasks 100 to 131

I/O interrupt tasks are disabled by default when cyclic task execution is
started. To enable I/O interrupts, execute the MSKS (SET INTERRUPT
MASK) instruction in a cyclic task for the interrupt number for Interrupt Input
Unit.

Example: The following example shows execution 1/O interrupt task 103 when
interrupt input No. 3 of Interrupt Input Unit No. 0 (the leftmost of the two Units
O and 1) is ON.

Do not enable unneeded I/O interrupt tasks. If the interrupt input is triggered
by noise and there isn't a corresponding interrupt task, a fatal error (task

Interrupt Input Unit No. O

Note
error) will cause the program to stop.
1/O interrupt from Interrupt Input
Unit No. 0
Cyclic task Interrupt input number: Only 3 will

be enabled.

ST

The specified I/0 in-

terrupt will be en-

abled when the
MSKS instruction is
executed.

W ~N LA WN = O

Cyclic task Interrupt 1;
‘ 13

— l 14

O " I/O interrupt task 103 15

[TTTTTTTTITT]

173



I nterrupt Tasks Section 4-3

Interrupt Input Unit

Numbers, Input Interrupt Input Unit No. Input No. I/O interrupt task
Numbers, and I/O (See note.)
Interrupt Task Numbers 0 Oto 15 100 to 115

1 Oto 15 116 to 131

Note For CS-series PLCs, Interrupt Input Unit numbers are in order from O to 1
starting on the left side of the CPU Rack. For CJ-series PLCs, Interrupt Input
Unit numbers are in order from 0 to 1 starting from the CPU Unit.

CS-series PLCs CJ-series PLCs
Interrupt Input Unit Interrupt Input Unit
PU Unit CPUUnit o 1~ UnitNo.

o

Operand S (the Second Operand) of MSKS: The bits of FFF7 Hex corre-
spond to the interrupt inputs of the Interrupt Input Unit. Interrupt input num-
bers 0 to 15 correspond to bits 0 to 15.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[oToJoJoJoTJoJolo 11T 1 TiJoJ1T11 0111
F Hex F Hex F Hex 7 Hex

Scheduled Interrupt Tasks: Tasks 2 and 3

Scheduled interrupt tasks are disabled in the default PLC Setup at the start of
cyclic task execution. Perform the following steps to enable scheduled inter-
rupt tasks.

1,2,3... 1. Execute the MSKS (SET INTERRUPT MASK) instruction from a cyclic
task and set the time (cycle) for the specified scheduled interrupt.

2. Set the scheduled interrupt time unit in PLC Setup.

Note The interrupt time setting affects the cyclic task in that the shorter the interrupt
time, the more frequently the task executes and the longer the cycle time.

174



| nterrupt Tasks

Section 4-3

Example: The following examples shows executed scheduled interrupt task 2
every second.

C 1

yclic task

l_

Cyclic task

Interrupt number 4 will be executed
at an interrupt interval of 0064 Hex.

Every second

Interrupt

A

Scheduled interrupt task 2

— Scheduled interrupt time unit in PLC
Setup = 10 ms (0.01 s)

Interrupt Numbers and Scheduled Interrupt Task Number

Interrupt No.

Scheduled interrupt task

4 2
5 3
PLC Setup Settings
Address Name Description Settings Default setting
Bits 0 to 3 of 195 Scheduled inter- Sets time unit for scheduled inter- | 00 Hex: 10 ms 00 Hex
rupt time units rupts to execute interrupt tasks at | 01 Hex: 1.0 ms
fixed intervals. 02 Hex: 0.1 ms
(CJ1M CPU Units
only)

Power OFF Interrupt Task: Task 1

The power OFF interrupt task is disabled in the default PLC Setup at the start
of cyclic task execution.

The power OFF interrupt task can be enabled in the PLC Setup.

In the default PLC Setup, the power OFF interrupt task will be stopped after
10 ms. The power OFF interrupt task must be executed in less than 10 ms.

If a power OFF detection delay time is set in the PLC Setup, the power OFF
interrupt task will be stopped after 10 ms minus the power OFF detection
delay time setting in the PLC Setup. In this case, the power OFF interrupt task
must execute in less than 10 ms minus the power OFF detection delay time
set in the PLC Setup.

175



I nterrupt Tasks Section 4-3

Example: If the power OFF detection delay time is set to 4 ms in PLC Setup,
then execution time must be less than 10 minus 4 ms, or 6 ms.

Power OFF interrupt task

Less than 10 ms minus the
power OFF detection delay time
[ VR

[ o/

The default setting is 10 ms max.

END v

_.—f—///‘-‘v

Note A power OFF condition is recognized when the power supply falls below 85%
of the minimum rated voltage (80% for DC power supplies), and the time it
takes before the power OFF interrupt task actually executes is the default
power OFF detection time (10 to 25 ms for AC power supplies and 2 to 5 ms
for DC power supplies) plus the power OFF detection delay time in the PLC
Setup (0 to 10 ms). Cyclic tasks will be executed for this amount of time.

Power supply < 85% of the Power OFE CPU reset
minimum rated voltage (80% rgcognized (force end)
for DC power supplies)

\4 v v

Cyclic task ?

FE interrupt task Stop

\ 4

<

Default power OFF 10 ms minus the power
detection time plus OFF detection delay time
power OFF detection

delay time

Note Be sure that the power OFF interrupt task can be executed in less than 10 ms
minus the power OFF detection delay time set in the PLC Setup. Any remain-
ing instructions will not be executed after this time has elapsed. The power
OFF interrupt task will not be executed if power is interrupted during online
editing. In addition to the instructions that cannot be used in any interrupt task
(refer to the Programming Manual for details), the following instructions can-
not be used in the power OFF interrupt task: READ DATA FILE: FREAD(700),
WRITE DATA FILE: FWRIT(701), NETWORK SEND: SEND(090), NETWORK
RECEIVE: RECV(098), DELIVER COMMAND: CMND(490), TRANSMIT:
TXD(236), RECEIVE: RXD(235), and PROTOCOL MACRO: PMCR(260).

176



| nterrupt Tasks

Section 4-3

Power OFF Interrupt Task Execution

Cyclic task

___ﬂ/\l/v

™~ Power — -
e

/

OFF I
N Power OFF interrupt task 1
CPU reset #— :l
| M
I -/
END

PLC Setup Settings for Power OFF Interrupt Task (Task Number: 1)

«—— Power OFF interrupt task ON/OFF

setting in PC Setup: ON

Address Name Description Settings Default
setting
Bit 15 at +225 | Power OFF If bit 15 of +225 is ON, then a power OFF interrupt 0: OFF, 0
INTERRUPT | task will start if power turns OFF. 1: ON
TASK
Bits 0 to 7 at Power OFF Power OFF is recognized when this time plus the 00 to 0A Hex: 0 | 00 Hex
+225 Detection default power OFF detection time (10 to 25 ms for AC |to 10 ms (1-ms
Delay Time power supplies and 2 to 5 ms for DC power supplies) | units)
expires.

External Interrupt Tasks: Tasks 0 to 255

External interrupt tasks can be received at any time.

Interrupt processing is performed at the CPU Unit in PLCs containing an Inner
Board (CS Series only), Special I/0 Units, or CPU Bus Units. Settings don’t
have to be made at the CPU Unit unless the program contains an external

interrupt task for a particular task number.

External interrupts are not supported by CJ1 CPU Units.

Example: The following example shows an external interrupt generated from
a CS1W-SCB[I1 Serial Communications Board.

CPU Unit

Interrupt

/— Serial Communications Board

When the Serial Communications Board’s response notification method is set
for interrupt notification (fixed number) or interrupt notification (reception case

177



I nterrupt Tasks Section 4-3

number), the Board will request execution of an external interrupt task in the
CPU Unit after it receives data from its serial port and writes that data into the
CPU Unit’s I/O memory.

CPU Unit Specifies exter-  Serial Communications Board
nal interrupt task
number and re-
quests interrupt
processing.

Cyclic task

&
i g

Interrupt task

g et

1/O memory

Note 1. When the response notification method is set for interrupt notification (fixed
number), the Board requests execution of the interrupt task with the preset
task number.

2. When the response notification method is set for interrupt natification (re-
ception case number), the external interrupt task number is calculated with
the specified formula and the Board requests execution of the interrupt
task with that task number.

3. If an external interrupt task (0 to 255) has the same number as a power
OFF task (task 1), scheduled interrupt task (task 2 or 3), or I/O interrupt
task (100 to 131), the interrupt task will be executed for either interrupt con-
dition (external interrupt or the other interrupt condition). As a rule, task
numbers should not be duplicated.

4-3-2 Interrupt Task Priority

Execution of another interrupt task will be ended to allow the power OFF inter-
rupt task to execute. The CPU will reset but the terminated interrupt task will
not be executed following execution of the power OFF interrupt task.

178



| nterrupt Tasks

Section 4-3

Cyclic task

Interrupt during Interrupt Task Execution

If an interrupt occurs while another interrupt task is being executed, the task
for the interrupt will not be executed until the original interrupt finishes execut-

ing.

Note

Note

e v
Interrupt task A l

Interrypt during  Interrupt task B

] execufion

O [ ]
O

END

END

Interrupt task A will continue
until it finishes executing.

If you do not want a specific I/O interrupt task number to be saved and exe-
cuted for a CS-series CPU Unit when it occurs while another interrupt task is
being executed, execute the CLI (CLEAR INTERRUPT) instruction from the
other interrupt task to CLEAR the interrupt number saved internally. Sched-
uled interrupts and external interrupts cannot be cancelled.

Interrupt task 101 will be ignored while
Cyclic task / another interrupt task is being executed.

}——cu/ A !

0 Interrupt task A )
Interrupt  I/O interrupt task
#0001 1 during

T | O execution ]

.

Interrupt task 101 will
not be executed.
Multiple Interrupts Occurring Simultaneousl

Interrupt tasks other than power OFF interrupt tasks will be executed in the
following order of priority whenever multiple interrupts occur simultaneously.

I/O interrupt tasks (CS Series only) > external interrupt tasks (CS Series only)
> scheduled interrupt tasks

Each of the various types of interrupt task will be executed in order starting
from the lowest number if more than one occurs.

Only one interrupt will be recorded in memory for each interrupt task and an
interrupt will not be recorded for an interrupt that is already being executed.
Because of the low order of priority of scheduled interrupts and because that
only one interrupt is recorded at a time, it is possible for a scheduled interrupt
to be skipped.

4-3-3 Interrupt Task Flags and Words

Maximum Interrupt Task Processing Time (A440)

The maximum processing time for an interrupt task is stored in binary data in
0.1-ms units and is cleared at the start of operation.

179



I nterrupt Tasks

Section 4-3

Interrupt Task with Maximum Processing Time (A441)
The interrupt task number with maximum processing time is stored in binary
data. Here, 8000 to 80FF Hex correspond to task humbers 00 to FF Hex.

A44115 will turn ON when the first interrupt occurs after the start of operation.
The maximum processing time for subsequent interrupt tasks will be stored in
the rightmost two digits in hexadecimal and will be cleared at the start of oper-
ation.

Interrupt Task Error Flag (Nonfatal Error) (A40213)

If Interrupt Task Error Detection is turned ON in the PLC Setup, the Interrupt
Task Error Flag will turn ON if an interrupt task error occurs.

Interrupt Task Error Flag (A42615)/Task Number Generating the Interrupt
Task Error (A42600 to 42611)

If A40213 turns ON, then the following data will be stored in A42615 and
A42600 to A42611.

A40213

Interrupt Task Error Description A42615 A42600 to 42611

Interrupt Task Error (If Interrupt
Task Error Detection is turned ON
in the PLC Setup)

OFF The interrupt task number will be
stored in 12 bits of binary data
(interrupt task 0 to 255: 000 to

OFF Hex).

If an interrupt task executes for
more than 10 ms during C200H
Special I/0 Unit or SYSMAC BUS
Remote 1/O refresh (CS Series
only).

When trying to refresh I/O for a
large number of words using the
IORF instruction from an interrupt
task while an Special 1/0 Unit is
being refreshed by cyclic I/O

ON The unit number of the Special I/O
Unit being refreshed will be stored
in 12 bits of binary data (unit No. 0

to 95: 000 to O5F Hex).

refreshing.

Task Number when
Program Stopped (A294)

The type of task and the current task number when a program stops due to a
program error will be stored in the following locations.

Type

A294

8000 to 80FF Hex (corresponds to inter-
rupt task No. 0 to 255)

0000 to 001F Hex (corresponds to task
No. 0 to 31)

Interrupt task

Cyclic task

4-3-4  Application Precautions

Long Execution Times
with C200H Special 1/0
Units or SYSMAC BUS (CS
Series Only)

180

Be sure all interrupt tasks (1/0, scheduled, power OFF, and external interrupt
tasks) execute within 10 ms when using C200H Special /0 Units or SYSMAC
BUS Remote I/O.

If an interrupt task executes for more than 10 ms during C200H Special 1/0
Unit or SYSMAC BUS remote I/O refreshing, an interrupt task error will occur,
A40206 (Special I/O Unit Error Flag) will turn ON, and I/O refreshing will be
stopped for Special I/O Units. The CPU Unit, however, will continue to oper-
ate.

If Interrupt Task Error Detection is turned ON in the PLC Setup, A40213 (Inter-
rupt Task Error Flag) will turn ON when an interrupt task error occurs, and the



| nterrupt Tasks Section 4-3

offending interrupt task number will be stored in A426 (Interrupt Task Error,
Task Number). The CPU Unit however will continue to operate.

C200H Special /0 Unit X Incorrect Use Corroct Use
’/ Interrupt task Interrupt task
S
H T —
: Upto 10 ms
_| 10 ms or O ’
Master SYSMAC
or  /BUS Remote I/O Unit ] }‘““—*“O'_ longer
m y
D | .
SYSMAC BUS f
Remote 1/0

Executing IORF for a If an IORF(097) instruction has to be executed from an interrupt task for a
Special I/O Unit Special /0 Unit, be sure to turn OFF cyclic refresh for the Special I/O Unit
(using the unit number) in the PLC Setup.

A interrupt task error will occur if you try to refresh a Special I/O Unit with an
IORF(097) instruction from an interrupt task while that UNIT is also being
refreshed by cyclic I/O refresh or by 1/O refresh instructions (IORF(097) or
immediate refresh instructions (1)). If Interrupt Task Error Detection is turned
ON in the PLC Setup when an interrupt task error occurs, A40213 (Interrupt
Task Error Flag) will turn ON and the unit number of the Special I/O Unit for
which I/O refreshing has been duplicated will be stored in A426 (Interrupt
Task Error, Task Number). The CPU Unit will continue running.

Correct Use O

Special I/0 Unit

Interrupt task

Y l/O|refresh Do not executed Disable cyclic refresh-
: — —i f——— IORF IORF(097) in an interrupt ing for Special I/0
D1 task if cyclic refreshing Is Units in the PC Setup
enabled for Special /10 before executing the
D2 Units in the PC Setup. IORF(097) instruction

in an interrupt task.

‘_‘/"V‘/
Note The leftmost bits of A426 (Interrupt Task Error, Task Number) can be used to

determine which of the above interrupt task errors occurred. (Bit 15: 10 ms or
higher execution error if 0, multiple refresh error if 1)

PLC Setup Settings

Address Name Description Settings Default
setting
Bit 14 at +128 | Interrupt Task Error Specifies whether or not to detect interrupt | 0: Detection 0
Detection task errors. The Interrupt Task Error Flag enabled,
(A40213) will be function when detection is | 1- petection
enabled. disabled

181



I nterrupt Tasks

Section 4-3

Related Auxiliary Area Flags/Words

Name

Address Description

Interrupt Task Error
Flag

A40213

Turns ON if an interrupt task executes for more than 10 ms during
C200H Special 1/0 Unit or SYSMAC BUS Remote /O refresh, but the
CPU Unit will continue running. The ERR/ALM LED will light on the
front panel (CS Series only).

Turns ON if you try to refresh a Special /0O Unit with an IORF instruc-

tion from an interrupt task while that Unit is being refreshed by cyclic
I/O refresh.

Interrupt Task Error,
Task Number

A426

Contains the interrupt task number or the number of the Special I/O
Unit being refreshed.

(Bit 15 will be OFF when execution of an interrupt task requires 10 ms
or longer and ON when duplicated Special I/0O Unit refreshing has
occurred.)

Disabling Interrupts

Data Concurrency
between Cyclic and
Interrupt Tasks

182

Processing will be interrupted and the interrupt task will be executed in the fol-
lowing instances.
» While an instruction is being executed
* During Basic 1/0 Unit, CPU Bus Unit, Inner Board (CS Series only), or
SYSMAC BUS remote I/O (CS Series only) refreshing

* During HOST LINK servicing

Data may not be concurrent if a cyclic (including extra cyclic tasks) and an
interrupt task are reading and writing the same 1/0 memory addresses. Use
the following procedure to disable interrupts during memory access by cyclic
task instructions.

» Immediately prior to reading or writing by a cyclic task instruction, use a
DI (DISABLE INTERRUPT) instruction to disable execution of interrupt
tasks.

» Use an El (ENABLE INTERRUPT) instruction immediately after process-
ing in order to enable interrupt task execution.

Cyclic task

Disabled
+ Int t task
Reading and writing I/O < nierrupttas

memory common to interrupt
tasks.

Enabled
€——— Interrupt task

Processing with interrupt task
execution enabled

-

Problems may occur with data concurrency even if DI(693) and EI(694) are
used to disable interrupt tasks during execution of an instruction that requires
response reception and processing (such as a network instruction or serial
communications instruction).

Note With the CS1-H, CJ1-H, CJ1M, or CS1D CPU Unit, execution of the BIT

COUNTER (BCNT), BLOCK SET (BSET), and BLOCK TRANSFER (XFER)



Programming_] Device Operations for Tasks Section 4-4

instructions will not be interrupted for execution of interrupt task, i.e., execu-
tion of the instruction will be completed before the interrupt task is executed,
delaying the response of the interrupt. To prevent this, separate data process-
ing for these instructions into more than one instructions, as shown below for

XFER.
XFER Procest3|gg XFER
2100 separated. 250
D00000 D00000
D30000 D30000
XFER instruction is Interrupts are possible as
not interrupted soon as execution of XFER
' has been completed.
XFER

> &50

D00050
D30050

4-4 Programming Device Operations for Tasks
4-4-1 Using Multiple Cyclic Tasks

Use the CX-Programmer to create more than one cyclic task (including extra
cyclic tasks). A Programming Console cannot be used to create new cyclic
tasks. Be sure to use a CX-Programmer to allocate the task type and task
number for programs that are created.

» Multiple cyclic tasks created and transferred to a CPU Unit from the CX-
Programmer can be monitored or edited from a Programming Console.

» The Programming Console can be used to create one cyclic task and one
or more specific interrupt tasks simply by using the Programming Con-
sole’s All Clear function and specifying Interrupt Tasks. Only interrupt
tasks 1 (power OFF interrupt), 2 and 3 (scheduled interrupts), and 100
through 131 (I/O interrupts) can be created with a Programming Console.
With a CJ1IM CPU Unit, however, interrupt tasks 140 through 143 (for
built-in inputs) can also be created. Cyclic task 0 will start when PLC
operation is started.

4-4-2  Programming Device Operations
CX-Programmer Specify the task type and number as attributes for each program.
1,2,3... 1. Select View/Properties, or click the right button and select Properties on

the popup menu, to display the program that will be allocated a task.

2. Select the General tab, and select the Task Type and Task No. For the
cyclic task, click the check box for Operation start to turn it ON.

Mame:

Taszk type: |C§,-'c|ic Taszk 00 Startup) j

[ Cperation start

183



Programming_; Device Operations for Tasks Section 4-4

Programming Console A task is handled as the entire program on the Programming Console. Access
and edit a program with a Programming Console by specifying CT00 to CT31
for a cyclic task or ITO01 to IT255 for an interrupt task.

000000 CTOO

CLR

0: Cyclic task, 1: Interrupt task

I | 1

@ Cyclic task No.? ; Interrupt task No.?
00 000

Enter 00 to 31. Enter 000 to 255.
000000 CTOO ooocoo ITOOO

Note 1. A Programming Console cannot create new cyclic tasks.

2. The CJ-series CPU Units do not currently support I/O or external interrupt
tasks. Only ITOO01 to ITOO3 can be specified.

184



SECTION 5
File Memory Functions

This section describes the functions used to manipulate file memory.

5-1 FleMemory . ..o 186
5-1-1 Typesof FileMemory. .......... . oo 186
5-1-2  FleData. ...t 188
B5-1-3 S oot 190
5-1-4  Description of File Operating Procedures . ................... 198
5-1-5  Applications . . ..o 199
52 ManipulatingFiles . ... e 201
5-2-1  Programming Devices (Including Programming Consoles). . .. ... 201
5-2-2  FINSCOMMANGS ... .vtt it e 204
5-2-3 FREAD(700), FWRIT(701), and CMND(490) ................ 205
5-2-4  Replacement of the Entire Program During Operation .......... 210
5-2-5 Automatic Transferat Startup. ... ... 216
5-2-6 SimpleBackup Function. . ........... ... 219
5-3 UsingFileMemory . ... ... 228
5-3-1 InitidizingMedia. .......... . i 228
5-3-2 OperatingProcedures. . ... ..o 230
5-3-3  Power Interruptions while Accessing FileMemory . ............ 233

185



File Memory

Section 5-1

5-1

File Memory

1,2,3...

The CS/CJ Series support file memory. The following media can be used as
memory for storing files.

1. Memory Cards

2. A specified range in the EM Area called EM file memory

Note CJ1M CPU Units do not have an EM Area, so EM file memory can-
not be used.

Both types of memory can be used to store the entire user program, I/O mem-

ory, and parameter areas as files.

CPU Unit
File
Memory
Card
File
File
EM area
File
5-1-1 Types of File Memory
Category Type Capacity Model File data recognized by Allowed file
the CPU Unit operations
Memory Cards Flash 15 Mbytes HMC-EF172 1) Entire user program | All are possible.
MEmOory 130 Mbytes HMC-EF372 2) Specified range in /O ]Sfrege?;?se)l%
Q 64 Mbytes HMC-EF672 memory '
SAM = = . - 3) Parameter area data o .
EM File M EM area capac- | From the speci- PLC Setup and other e automatic
re viemory ity of CPU Units |fied bank in the ( i P transfer at startup
EM area EM area of I/O settings) function cannot
CS Series
Sanllz ? CS1H-CPUGTH: |Mmemory to the See note 4. transfer data
A 832 Kb * | last bank (speci- from EM File
i (Banisy(g?[f) c. |fiedinPLC Memory. (See
Bank n :
I EM File E0_00000t0 | >oMP) page ;5)’8 for
BaricC | | Memory EC_00000) '
CJ Series
CJ1H-CPUG66H:
448 Kbytes
(Banks 0 to 6:
EO_00000 to
E6_00000)
Note 1. Referto 5-2 Manipulating Files for details on installing and removing Mem-
ory Cards.
2. Initialize the Memory Card or EM File Memory before using it for the first
time. Refer to 5-3 Using File Memory for details on initialization.
3. The HMC-AP001 Memory Card Adapter can be used to mount a Memory

186

Card in the PLC card slot of a personal computer to use the Memory Card
as a storage device.




File Memory

Section 5-1

1,2,3...

4. When the CX-Programmer is being used, the CPU Unit can recognize
symbol tables (including I/O comments) and comments. The transfer des-
tination is the Memory Card when a Memory Card is installed or EM File
Memory if a Memory Card is not installed.

Memory Card Precautions
Confirm the following items before using a Memory Card.

Format

Memory Cards are formatted before shipping. There is no need to format
them after purchase. To format them once they have been used, always do so
in the CPU Unit using the CX-Programmer or a Programming Console.

If a Memory Card is formatted directly in a notebook computer or other com-
puter, the CPU Unit may not recognize the Memory Card. If this occurs, you
will not be able to use the Memory Card even if it is reformatted in the CPU
Unit.

Number of Files in Root Directory

There is a limit to the number of files that can be placed in the root directory of
a Memory Card (just as there is a limit for a hard disk). Although the limit
depends on the type and format of the Memory Card, it will be between 128
and 512 files. When using applications that write log files or other files at a
specific interval, write the files to a subdirectory rather than to the root direc-
tory.

Subdirectories can be created on a computer or by using the CMND(490)
instruction. Refer to 3-25-4 DELIVER COMMAND: CMND(490) in the CS/CJ
Series Instructions Reference for a specific example using CMND(490).

Number of Writes

Generally speaking, there is no limit to the number of write operations that can
be performed for a flash memory. For the Memory Cards, however, a limit of
100,000 write operations has been set for warranty purposes. For example, if
the Memory Card is written to every 10 minutes, over 100,000 write opera-
tions will be performed within 2 years.

Minimum File Size

If many small files, such as ones containing only a few words of DM Area
data, are stored on the Memory Card, it will not be possible to use the com-
plete capacity of the Memory Card. For example, if a Memory Card with an
allocation unit size of 4,096 bytes is used, at least 4,096 bytes of memory will
be used for each file regardless of how small the file is. If you save 10 words
of DM Area data to the Memory Card, 4,096 bytes of memory will be used
even though the actual file size is only 68 bytes. Using files of such a small
size greatly reduces the utility rate of the Memory Card. If the allocation unit
size is reduced to increase the utility rate, however, the access speed will be
reduced.

The allocation unit size of the Memory Card can be checked from a DOS
prompt using CHKDSK. The specific procedure is omitted here. Refer to gen-
eral computer references for more information on allocation unit sizes.
Memory Card Access Precautions

When the PLC is accessing the Memory Card, the BUSY indicator will light on
the CPU Unit. Observe the following precautions.

1. Never turn OFF the power supply to the CPU Unit when the BUSY indica-
tor is lit. The Memory Card may become unusable if this is done.

187



File Memory

Section 5-1

5-1-2 File Data

The
mer
cial

User Program: Program Fi
Entire program including
task attributes

Entire program

Note The

Never remove the Memory Card from the CPU Unit when the BUSY indi-
cator is lit. Press the Memory Card power OFF button and wait for the
BUSY indicator to go out before removing the Memory Card. The Memory
Card may become unusable if this is not done.

Insert the Memory Card with the label facing to the right. Do not attempt to
insert it in any other orientation. The Memory Card or CPU Unit may be
damaged.

A few seconds will be required for the CPU Unit to recognize the Memory
Card after itis inserted. When accessing a Memory Card immediately after
turning ON the power supply or inserting the Memory Card, program an
NC condition for the Memory Card Recognized Flag (A34315) as an input
condition, as shown below.

Execution

condition A34315 A34313
| 1L L

I 1T A FREAD
Memory Card File Memory (o]
Detected Flag Operation Flag

51
S2
D

following files can be written from a Programming Device (CX-Program-
or Programming Console), FINS commands, ladder instructions, or spe-
control bits in CPU Unit memory:

Program Files
Data Files
Parameter Files

le  Specified Range in I/O Memory: Parameter Area Data:
Data Files Parameter File
Entire range or specified part of Initial settings used in the
one memory area CPU Unit.

CS1 CPU Bus
Unit settings area

' I Specified Routing tables
part I/O tables

PC Setup

Entire
area

following three types of files can also be written from the CX-Program-

mer.

188

Symbol Table Files
Comment Files
Program Index Files



File Memory

Section 5-1

Symbol Table Files
Tables of variables used
by the CX-Programmer

Comment Files
Comments used by the
CX-Programmer

Symbols, addresses, data
types, I/O comments

l~—— Rung comments

| —— Comments

Files That Can Be Written

from the CPU Unit

CPU Unit

User program
I/0O memory
Etc. b

Program files
Data files

Programming Device,
FINS commands,
ladder instructions, or
control bits

Programming Device, FINS
commands, ladder instructions, or
control bits

EM file

Files That Can Be Written

CX-Programmer

\ Data transfer

CX-Programmer

---from the CX-Programmer----

operations from the

Program Index File

Section information (used by
CX-Programmer)

Section names, section
comments

Symbol files
Comment files

Program index files

Program files memory

Data files

When a Memory Card is
not inserted

__________________________________________________________________

Note Symbol tables (symbols,

addresses, and I/0 comments) can be treated as

files from the CX-Programmer.

File File name | Extension Contents
Symbol table file |[SYMBOLS |.SYM Global and local symbols
Comment file COMMENTS | .CMT Rung comments and comments
(annotations)
Program index file | PROGRAM | .IDX Section names and section com-
ments

Data transfer operations can be performed for projects from the CX-Program-
mer to transfer all of the above files (symbol table files, comment files, pro-
gram index files) between the CPU Unit and a Memory Card or between EM
file memory. (Program index file transfers are supported starting from version
2.0.) The symbol table files and comment files can also be transferred
between the CX-Programmer, computer RAM, and a data storage device with
CX-Programmer version 1.2 or later.

The CX-Programmer can also be used to save data from individual parameter
areas in files with an extension of .STD. (These files cannot be used for auto-
matic transfer at startup. All parameter areas must be save in one file to
enable automatic transfer at startup.)

189



File Memory Section 5-1

5-1-3 Files

Files are formatted in DOS, and therefore can be used as regular files on a
Windows computer.

Files are identified by file hames and extensions, as shown in the following
table. A file name is written using the following characters: Letters A to Z,
numbers0to9,!, & $,# °,{, },— " () and _

The following characters cannot be used in file names: ,, ., /, ¥, 2, *,“, ;, ;, <, >,
=, +, space

The filename extensions depend upon the type of file being stored. Data files
can have extensions IOM, TXT, CSV, or IOR. (TXT, CSV, and IOR extensions:
Not supported by CS-series CS1 CPU Units that are pre-EV1.) Program files
have the extension OBJ and parameter files have the extension STD. The
location of a file in memory can be specified in the directory, and a directory
can be up to 5 subdirectories deep (counting the root directory).

File Types. Names, and Extensions

There are 3 types of files that can be managed (read and written) by the CPU
Unit.

» General-purpose Files
These files can be accessed (read or written) with Programming Devices,
FINS commands, instructions, or Auxiliary Area control bit operations.
The file names can be defined freely by the user.

» Automatic Transfer at Startup Files
These files are automatically transferred from the Memory Card to the
CPU Unit when the power is turned ON. The file names are fixed as
AUTOEXEC or ATEXECLIL.

» Backup Files (Not supported by CS-series CS1 CPU Units that are pre-
EV1)
These files are transferred between the Memory Card and CPU Unit by
the backup function. The filenames are fixed as BACKUPLI[].

General-purpose Files The following table shows file names and extensions of general-purpose files.
Type Namel | Extension Description Explanation
Data File Frrkxekk 1 1OM Specified range in |« Data from start to end word in | Binary format
I/O memory word units (16 bits) located in
TIXT 2
one area. TXT format

(non-delimited or
e The area can be the CIO, HR, tab-delimited)

WR, AR, DM, or EM Area.
.CSV CSV format?
(comma-delimited)

Program File | ******xx | OBJ Entire user pro- « All cyclic and interrupt tasks as well as task data for
gram one CPU Unit.

Parameter Frkkkkkk | STD PLC Setup, regis- |+ Includes all initial settings for one CPU Unit.

Area File tered I/O table, « The user does not have to distinguish parameter data
routing tables, in the file by type.
CPU Bus Unit

settings®, etc.

Note 1. File names, represented by “********" ghove, consist of up to 8 ASCII char-
acters.

2. The TXT and CSV file formats: Not supported by CS-series CS1 CPU
Units that are pre-EV1.

3. One example of the CPU Bus Unit settings would be the Data Link Tables.
Refer to the operation manuals for specific Units for other setup data.

190



File Memory

Section 5-1

Files Automatically Transferred at Startup
The File column indicates the files that must be present in the Memory Card
to enable automatic transfer at startup.

Type

Namel

Extension

Description

Explanation

File

Data File

AUTOEXEC

.IOM

I/O memory data
(Contains the specified
number of words of data
beginning at D20000.)

Store DM data beginning at D20000 in
a file named AUTOEXEC.IOM.

At startup, all of the data in the file will
be transferred to the DM Area begin-
ning at D20000.

e This file does not have to be on the
Memory Card when the automatic
transfer at startup function is being
used.

ATEXECDM

.IOM

I/O memory data?
(Contains the specified
number of words of data
beginning at D00000.)

* Store DM data beginning at DO000O in
a file named ATEXECDM.IOM.

* At startup, all of the data in the file will
be transferred to the DM Area begin-
ning at DO000O.

* This file does not have to be on the
Memory Card when the automatic
transfer at startup function is being
used.

Note The data in this file has higher pri-
ority if it overlaps the DM data
contained in AUTOEXEC.IOM.

ATEXECEL]

.IOM

EM Area data (bank [J))?
(Contains the specified
number of words of data
beginning at
E[]_00000.)

Store data for EM bank [] beginning at
EL]_00000 in a file named ATEX-
ECE[].IOM. The maximum bank num-
ber depends upon the model of CPU
Unit being used.
« At startup, all of the data in the file will
be transferred to EM bank [] beginning
at E[1_00000.
e This file does not have to be on the
Memory Card when the automatic
transfer at startup function is being
used.

Program
File

AUTOEXEC

.OBJ

Entire user program

The file does not have to be on the
Memory Card even when automatic
transfer at startup is specified.

e All cyclic and interrupt task programs
as well as task data for one CPU Unit.

Required

Parameter
Area File

AUTOEXEC

.STD

PLC Setup, registered
I/O table, routing tables,

CPU Bus Unit settings®,
etc.

The file must be on the Memory Card
when automatic transfer at startup is
specified.

Includes all initial settings for one CPU
Unit.

The user does not have to distinguish
parameter data in the file by type.

Initial setting data will automatically be
stored at specific locations in the CPU
Unit at startup

Required

Note 1.

Make sure the names of the files to be transferred automatically at startup
are AUTOEXEC or ATEXECLILL

The ATEXECDM.IOM and ATEXECELILIOM files: Not supported by CS-
series CS1 CPU Units that are pre-EV1.

191



File Memory

Section 5-1

Backup Files (Not
Supported by CS-series
CS1 CPU Units That Are

3. One example of the CPU Bus Unit settings would be the Data Link Tables.
Refer to the operation manuals for specific Units for other setup data.

The files in the following table are created automatically when data is trans-
ferred to and from the Memory Card during backup operation.

Pre-EV1)

Type Namel Extension Description Explanation

Data file BACKUP .IOM DM Area words allo- |+ Contains DM data from D20000 to D32767.
cated to Special /O |+ This file must exist on the Memory Card when
Units, CPU Bus reading data from the Memory Card during
Units, and Inner backup.

Boards (CS Series

only)

BACKUPIO |[.IOR I/O memory data < Contains all of the data in the CIO, WR, HR, and
areas AR data areas as well as timer/counter Comple-
tion Flags and PVs.?

e This file must exist on the Memory Card when
reading data from the Memory Card during
backup.

BACKUPDM |.IOM General-purpose DM |+ Contains DM data from D0O0000 to D19999.

Area + This file must exist on the Memory Card when
reading data from the Memory Card during
backup.

BACKUPEL] |.IOM General-purpose EM | Contains all of the EM data for EM bank [] with

Area addresses ranging from E[]_00000 to E[]_32767.

(The maximum bank number depends upon the

model of CPU Unit being used.)

This file must exist on the Memory Card when read-

ing data from the Memory Card during backup.

* When data is backed up to the Memory Card, all
of the data in each EM bank is automatically writ-
ten to a separate file.

Program file BACKUP .0OBJ Entire user program |+ Contains all cyclic and interrupt task programs as

well as task data for one CPU Unit.

e This file must exist on the Memory Card when
reading data from the Memory Card during
backup.

Parameter file .STD PLC Setup, regis- < Contains all initial settings for one CPU Unit.
tered I/O table, rout- |+ The user does not have to distinguish parameter
ing tables, CPU Bus data in the file by type.

Unit settings®, etc. |« This file must exist on the Memory Card when
reading data from the Memory Card during
backup.

Unit/Board BACKUPLI] |.PRM Data for specific Unit |« Control backup data from one Unit or Board.

backup files (where [ Tis or Board Refer to 5-2-6 Simple Backup Function for

(CS1-H, CJ1- [the unit details.

H, or CJ1IM address of

CPU Units the

only) Unit/Board

being backed
up)
Note 1. Make sure the names of the files used for backup are BACKUPLILI.

2. The CIO Area, WR Area, Timer/Counter Completion Flags and PVs, and
force-set/force-reset data that is read from the Memory Card at startup will
be cleared. This data can be retained with the following PLC Setup set-
tings: IOM Hold Bit Status at Startup and Forced Status Hold Bit Status at
Startup.

192



File Memory

Section 5-1

Directories

File Sizes

3. One example of the CPU Bus Unit settings would be the Data Link Tables.
Refer to the operation manuals for specific Units for other setup data.

It is possible to access files in subdirectories with CS/CJ-series PLCs, but
Programming Consoles can access files only when they are in the root direc-
tory. The maximum length of a directory path is 65 characters. Be sure not to
exceed the maximum number of characters when creating subdirectories in
the Memory Card with a program such as Windows.

The size of files in bytes can be calculated with the equations in the following

table.

File type

File size

Data files (.IOM)

(Number of words x 2) + 48 bytes

Example: Entire DM Area (D00000 to D32767)
(32,768 words x 2) + 48 = 65,584 bytes

Data files (.TXT or .CSV)

The file size depends upon the number of delimiters and
carriage returns being used. The delimiter code is one
byte and the carriage return code is two bytes.

Example 1: Non-delimited words, no carriage return
123456789ABCDEF012345678 occupies 24 bytes.

Example 2: Delimited words, carriage return every 2 fields
1234,56780

9ABC,DEFOO

1234,56780

occupies 33 bytes.

Example 3: Delimited double words, carriage return every
2 fields

56781234,DEF012340

567812340

occupies 29 bytes.

Program files (.OBJ)

(Number of steps used x 4) + 48 bytes (See note.)

Parameter files (.STD)

16,048 bytes

Note Calculate the number of steps in the program file by subtracting the available
UM steps from the total UM steps. These values are shown in the CX-Pro-
grammer’s Cross-Reference Report. Refer to the CX-Programmer User Man-

ual for details.

193



File Memory Section 5-1

Data Files
General-purpose Files

1,2,3... 1. General-purpose data files have filename extensions IOM, TXT, or CSV.
(The TXT and CSV files: Not supported by CS-series CS1 CPU Units that
are pre-EV1.)

Extension Data format Contents Words/field
.IOM Binary CS/CJ-series data format
TXT Non-delimited ASCIl | This format is created by converting one-word fields of /O | 1 word
(See notes.) | words format | memory (4-digit hexadecimal) to ASCII and packing the
fields without delimiters. Records can be delimited with car-
riage returns.
Non-delimited This format is created by converting two-word fields of /O | 2 words
double words memory (8-digit hexadecimal) to ASCII and packing the
fields without delimiters. Records can be delimited with car-
riage returns.
Tab-delimited This format is created by converting one-word fields of /O | 1 word
words memory (4-digit hexadecimal) to ASCII and delimiting the
fields with tabs. Records can be delimited with carriage
returns.
Tab-delimited This format is created by converting two-word fields of I/O | 2 words
double words memory (8-digit hexadecimal) to ASCII and delimiting the
fields with tabs. Records can be delimited with carriage
returns.
.CSV Comma-delimited This format is created by converting one-word fields of /O | 1 word
(See notes.) | words memory (4-digit hexadecimal) to ASCII and delimiting the
fields with commas. Records can be delimited with carriage
returns.
Comma-delimited This format is created by converting two-word fields of /O | 2 words
double words memory (8-digit hexadecimal) to ASCII and delimiting the
fields with commas. Records can be delimited with carriage
returns.

Note a) Reading and Writing TXT and CSV Data Files:
TXT and CSV data files can be read and written with FREAD(700)
and FWRIT(701) only.

b) Precautions on Characters:
Data cannot be written to I/O memory properly if the TXT or CSV
file contains characters other than hexadecimal characters (0 to 9,
AtoF oratof)

c) Precautions on Field Size:
When words are being used, data cannot be written to I/O memory
properly if the TXT or CSV file contains fields that are not 4-digit
hexadecimal. Likewise, when double words are being used, data
cannot be written properly if the file contains fields that are not 8-
digit hexadecimal.

d) Storage Order:
When words are being used, /0O memory data is converted to
ASCII and stored in one-word fields in order from the lowest to the
highest I/O memory address.
When double words are being used, I/O memory data is converted
to ASCII and stored in two-word fields in order from the lowest to
the highest I/O memory address. (Within the two-word fields, the
higher-address word is stored first and the lower-address word is
stored second.)

194



File Memory

Section 5-1

IOM Data File Structure

CSV/ITXT Data File
Structure (Single Word)

e) Delimiters:
When there are no delimiters, the fields are packed consecutively
and then stored. When delimited by commas, commas are insert-
ed between fields before they are stored. When delimited by tabs,
tab codes are inserted between fields before they are stored.
When delimiters (commas or tabs) are specified in FREAD(700),
the data is read as delimited data with one-word delimiters (com-
mas or tabs).
f) Carriage Returns:
Data is packed consecutively when carriage returns are not used.
When carriage returns are used, a carriage return code is inserted
after the specified number of fields. An offset from the beginning
of the file (starting read word or starting write word) cannot be
specified in the FREAD(700)/FWRIT(701) instructions if carriage
returns are used in the file.
g) Number of Fields:
The overall amount of data in the file depends upon the number of
fields (number of write items) specified in the FWRIT(701) instruc-
tion and the number of words/field. There is one word/field when
words are used and two words/field when double words are used.
2. Data files do not contain information indicating what data is stored, i.e.,
what memory area is stored. Be sure to give file names that indicate the
contents, as shown in the examples below, to aid in file management.
Examples: D00100.10M, CI00020.10M
Data from the beginning of the file will be written starting at the address
specified in /0O memory even if the data originally written to the data file
(IOM, TXT, or CSV) is not from the same area. For example, if CIO data in
a file is written to the DM Area from a Programming Device, the data will
be read to the DM Area of the CPU Unit without any indication that the area
is different.
Note Data files with the TXT and CSV format contain hexadecimal (0 to 9, A to F)
data that allows the 1/O memory numerical data to be exchanged with spread-
sheet programs.

The following illustration shows the binary data structure of a data file
(ABC.IOM) containing four words from I/O memory: 1234 Hex, 5678 Hex,
9ABC Hex, and DEFO Hex. The user, however, does not have to consider the
data format in normal operations.

XX
XX

/O memory 1234 g \L 48 bytes (used by system)
5678

9ABC | —Pp [ XX b

DEFO 12
34

56
78
9A
BC
DE
FO |

> 8 bytes

Contents of ABC.IOM

The following illustration shows the data structure of a CSV data file
(ABC.CSV) with single-word fields containing four words from 1/O memory:
1234 Hex, 5678 Hex, 9ABC Hex, and DEFO Hex. The structure of the TXT file
with single-word fields is the same.

195



File Memory Section 5-1
31 1
212 4 bytes
/O memory | 1234 Soﬂ\é%rltled 33| 3 y
5678 ° 34] 4
9ABC —) 2C| . Delimiter 1234,5678,9ABC,DEF0
DEFQ 3515
3615 Lapn
ytes
3717 The file displayed as text.
38| 8
2C| , Delimiter
§
Contents of ABC.CSV

CSVITXT Data File
Structure (Double Word)

I/0O memory 1234

5678

9ABC

DEFO

Creating Data Files with
Spreadsheet Software

1,23..

196

The following illustration shows the data structure of a CSV data file
(ABC.CSV) with double-word fields containing four words from I/O memory:
1234 Hex, 5678 Hex, 9ABC Hex, and DEFO Hex. The structure of the TXT file
with double-word fields is the same.

35 A

Converted to 36
ASCII (Upper 37
word first) 38

__._’ 31
32
33
34
2C

> 8 bytes 56781234, DEFO9ABC }

The file displayed as text.

B WONa200NOG

Delimiter

$

Contents of ABC.CSV

Use the following procedure to create TXT and CSV data files with spread-
sheet software such as Microsoft Excel.

* Set the cell contents to numeric or characters.

* Input 4 characters in each cell if single-word fields are being used or 8
characters if double-word fields are being used. For example, if single-
word fields are being used input 000A, not just A.

 Be sure to input only hexadecimal characters (0 to 9, Ato F, or ato f) in
the cells. Other characters and codes cannot be used.

When you want to store hexadecimal digits in I/O memory, it is helpful to con-
vert the spreadsheet’s decimal inputs to hexadecimal. Use the following pro-
cedure to convert to hexadecimal.

1. Select Add-Ins... from the Tools Menu.
2. Select Analysis ToolPak in the Add-Ins Menu.

3. Select Function from the Insert Menu at the cell where the function will be
used.

4. Select DEC2HEX (number, digits) from Engineering in the Category
Field.

5. When converting to 4-digit hexadecimal, input the following at the number
variable: IF(0O<=cell location,cell location,65535+cell location)

When converting to 8-digit hexadecimal, input the following at the number
variable: IF(0O<=cell location,cell location,4294967296+cell location)



File Memory Section 5-1
» Example 1: Inputting non-negative decimal values.
Item Converting unsigned decimal to 4-digit Converting unsigned decimal to 8-digit
hexadecimal hexadecimal
Function | DEC2HEX(cell_location,4) DEC2HEX(cell_location,8)
used
Example |jnout 10 in decimal and convert to 000A in 4-digit  |Input 10 in decimal and convert to 0000000A in
hexadecimal. 8-digit hexadecimal.
| B2 =l =| =DEC2HEX(E1 4) | Bz = = =DECZHEX(ET &)
A B C A B C
1 |Mon-negative source decimal: 10 1 |Mon-negative source decirmal 10
2 |Converted 4-digit hexadecimal: I DDDA_' 2 |Converted B-digit hexadecimal: I DDDDDDEIA!
E 3
4 4
» Example 2: Inputting signed decimal values.

Item Converting signed decimal to 4-digit hexadecimal | Converting signed decimal to 8-digit hexadecimal
Function | DEC2HEX(IF(O<=cell_location,cell_location,65536+ | DEC2HEX(IF(0<=cell_location,cell_location,
used cell_location),4) 4294967296+cell_location),8)

Example |5t -10 in decimal and convert to FFF6 in 4-digit  |Input -10 in decimal and convert to FFFFFFF6 in
hexadecimal. 8-digit hexadecimal.
| BZ ﬂ =|<=DECZHEX{IF(0=B1,B1 B5536+61) 4) | EZ ﬂ = <=DEC2HEX(IF(0<B1,B1 42945967 296+61) 3)
A B © A B c D
1 |Signed source decimal: -10 1 |Signed source decimal: -10
2 |Corverted 4-digit hexadeciral: I FFFB! 2 |Converted 8-digit hexadecimal: I FFFFFFFE!
El 3
4 4

There are 3 kinds of files that are transferred automatically at startup when
the automatic transfer at startup function is being used.

« AUTOEXEC.IOM: DM words allocated to Special I/O Units and Inner
Boards.
The contents of this file are transferred to the DM Area beginning at
D20000 when power is turned ON.
» ATEXECDM.IOM: General-purpose DM words
The contents of this file are transferred to the DM Area beginning at
DO00000 when power is turned ON.
» ATEXECELI.IOM: General-purpose EM words
The contents of this file are transferred to the EM Area beginning at
EL] 00000 when power is turned ON.
When creating the data files listed above, always specify the first address
shown above (D20000, D0O000O, or EL]_00000) and make sure that the size of
the file does not exceed the capacity of the specified data area.

All of the data in each file will always be transferred starting at the specified
first address (D20000, DO000O, or E[']_00000).

Data Files Transferred
Automatically at Startup

Note 1. When creating the AUTOEXEC.IOM, ATEXECDM.IOM, or ATEX-
ECELILIOM file from a Programming Device (Programming Console or CX-
Programmer), always specify the proper first address (D20000, DO000O, or
EL] 00000) and make sure that the size of the file does not exceed the ca-
pacity of the DM Area or specified EM bank. The contents of the file will
always be transferred starting at the proper first address (D20000,
D00000, or EL]_00000) even if another starting word is specified, which
could result in the wrong data overwriting the contents of that part of the
DM Area or EM bank. Furthermore, if the capacity of the DM Area or EM
bank is exceeded (as is possible when making settings from the CX-Pro-
grammer), the remaining data will be written to EM bank 0 if the DM Area
is exceeded or the following EM bank if an EM bank is exceeded.

197



File Memory

Section 5-1

Backup Data Files

2.

When using the CX-Programmer, you can specify a data file that will ex-
ceed the maximum DM Area address D32767 or maximum EM Area ad-
dress of E[]_32767. If the AUTOEXEC.IOM file exceeds the boundary of
the DM area, all remaining data will be written to the EM Area starting at
EO0_00000 and continuing in order of memory address and banks through
the final bank. It is thus possible to automatically transfer data to both the
DM and EM Areas at startup. Likewise, if the ATEXECELILIOM file is larger
than an EM bank, the remaining data will be written to subsequent EM
banks.

The System Setups for Special 1/0O Units, CPU Bus Units, and the Inner
Board (CS Series only) can be changed by using different AUTOEX-
EC.IOM files containing different settings for the Special I/O Unit Area
(D20000 to D29599), CPU Bus Unit Area (D30000 to D31599), and the In-
ner Board Area (CS Series only, D32000 to D32099). Memory Cards can
thus be used to create libraries of System Setup data for Special I/0 Units,
CPU Bus Units, and Inner Boards (CS Series only) for different systems or
devices.

The backup function creates 4 kinds of data files as described below.

To backup data, turn pin 7 ON and turn pin 8 OFF on the CPU Unit's DIP
switch, insert the Memory Card, and press and hold the Memory Card Power
Supply Switch for three seconds. The four backup files (BACKUP.IOM, BACK-
UPIO.IOR, BACKUPDM.IOM, and BACKUPELI.IOM) will be created automat-
ically and written to the Memory Card.

The four backup files are used exclusively by the backup function, although
three of the files (BACKUP.IOM, BACKUPDM.IOM, and BACKUPELILIOM)
can be created with Programming Device operations. (BACKUPIO.IOR can-
not be created with Programming Device operations.)

5-1-4 Description of File Operating Procedures

The following table summarizes the 6 methods that can be used to read and
write files.

Read: Transfers files from file memory to the CPU Unit.
Write: Transfers files from the CPU Unit to file memory.

Operating Medium File name Description Entire Data Area | Parameter
procedure program data (See Area data
note 3.)
Programming Device |Memory Card | Any valid file Read OK OK OK
(including Program- | EM file memory | name Write oK oK oK
ming Consoles) -
Other operations | OK OK OK
(See note 2.)
FINS command Memory Card | Any valid file Read OK OK OK
(See note 1)) EM file memory | name Write OK OK OK
Other operations | OK OK OK
(See note 2.) (See note 4.)
FREAD(700) and Memory Card | Any valid file Read data from | Not possible |OK Not possible
FWRIT(701) Instruc- | EM file memory | name one file.
tions Write data to one | Not possible | OK Not possible
file.

198




File Memory Section 5-1
Operating Medium File name Description Entire Data Area | Parameter
procedure program data (See Area data

note 3.)

Auxiliary Area control | Memory Card | Any valid file Read OK Not possible | Not possible

bit operation replaces name

the entire program

during operation.

(Not supported by

CS-series CS1 CPU

Units that are pre-

EV1)

Automatic Transfer at | Memory Card |AUTOEXEC or |Read OK OK OK

Startup ATEXECLI] Write Not possible | Not possible | Not possible
Backup operation Memory Card | BACKUPLI] Read OK OK OK

(Not supported by Write oK oK oK

CS-series CS1 CPU !

Units that are pre-

EV1)
Note 1. FINS commands for file memory operations can be sent from host comput-

5-1-5 Applications

Data Files

ers connected via a Host Link, another PLC connected to a network (using
CMND(490)), or the local PLC’s program (using CMND(490)). (For CS-se-
ries CS1 CPU Units that are pre-EV1, file memory operations cannot be
executed using CMND(490) in the same CPU Unit for which the file mem-
ory operations are being performed.

Other Operations: Format file memory, read file data, write file data,
change file name, read file memory data, delete file, copy file, create sub-
directory, and change file name.

Data files with the TXT or CSV formats can be read and written only with
the FREAD(700) and FWRIT(701) instructions. They cannot be read and
written with a Programming Device.

Version V1.2 and higher versions of the CX-Programmer can be used to
transfer program files (.OBJ) between the computer's RAM and a storage
device.

File memory can be used for the following applications.

In this application, DM Area data settings (for Special I/O Units, CPU Bus
Units, and Inner Boards (CS Series only)) are stored in the Memory Card. If
the data file is named AUTOEXEC.IOM, the settings stored in the file will be
automatically transferred when power is turned ON.

Data in an allocated DM area.

T Example: ABC.IOM

In this application, operation data (trends, quality control, and other data) gen-
erated during program execution is stored in EM file memory using the
WRITE DATA FILE instruction (FWRIT(701)).

199



File Memory

Section 5-1

ASCII Data Files
(.TXT and .CSV)

Program Files(.OBJ)

Parameter Area Files
(.STD)

200

Trends, etc.

/x“\_/\_,r

=l

™~

EM file memory

Note Data that is often accessed, such as trend data, is better stored in EM file

memory rather than on a Memory Card.

Production data that has been saved on the Memory Card in the TXT or CSV
format can be transferred to a personal computer via a Memory Card Adapter
and edited with a spreadsheet program (Not supported by CS-series CS1
CPU Units that are pre-EV1).

I/0 memory data stored
in TXT or CSV format Spreadsheet program

FWRIT

C Via Memory Card Adapter

or |_ 1 }
Memory Card

Conversely, data such as Special I/O Unit settings can be created with a

spreadsheet program in TXT or CSV format, stored on a Memory Card, and

read to the CPU Unit by FREAD(700) (Not supported by CS-series CS1 CPU
Units that are pre-EV1).

In this application, programs that control different processes are stored on
individual Memory Cards. The entire PLC configuration (program, PLC Setup,
etc.) can be changed by inserting a different Memory Card and using the
automatic transfer at startup function.

A.OBJ B.OBJ C.0BJ

The entire program can be replaced during operation from the program itself
(without a Programming Device) using an Auxiliary Area control bit (Not sup-
ported by CS-series CS1 CPU Units that are pre-EV1).

During operation .0OBJ

/

r Replace program.

In this application, the PLC Setup, routing tables, 1/O table, and other data for
particular devices or machines are stored in Memory Cards. The data can be
transferred to another device or machine just by switching the Memory Card.




Manipulating_] Files

Section 5-2

Backup Files

Symbols Table Files

Comment Files

A.0BJ

)

B.OBJ

A
Use A.STD.

The backup function can be used to store all of the CPU Unit’s data (the entire
I/O memory, program, and parameter area) on the Memory Card without a
Programming Device. If a problem develops with the CPU Unit's data, the
backed-up data can be restored immediately. (Not supported by CS-series

CS1 CPU Units that are pre-EV1)

C.0BJ

The CX-Programmer can be used to save program symbols and I/O com-
ments in symbols table files called SYMBOLS.SYM in Memory Cards or EM

file memory.

The CX-Programmer can be used to save program rung comments in com-
ment files called COMMENTS.CMT in Memory Cards or EM file memory.

5-2 Manipulating Files

The following procedures are used to read, write and otherwise work with files

using the following methods.
» Programming Devices
* FINS commands

* FREAD(700), FWRIT(701), and CMND(490) instructions in the user pro-
gram (CMND(490): Not supported by CS-series CS1 CPU Units that are

pre-EV1.)

» Replacement of the entire program using Auxillary Area control bits (Not
supported by CS-series CS1 CPU Units that are pre-EV1)

» Automatic transfer at startup

» Backup function (Not supported by CS-series CS1 CPU Units that are

pre-EV1)

5-2-1 Programming Devices (Including Programming Consoles)

The following operations are available through Programming Devices.

CPU Unit and file memory)

Operation CX-Programmer Programming
Console
Reading files (transfer from file memory | OK OK
to CPU Unit)
Writing files (transfer from CPU Unit to OK OK
file memory)
Comparing files (compare files in the Not possible OK

201



Manipulating_j Files Section 5-2

Operation CX-Programmer Programming
Console
Formatting file Memory Cards OK OK
memory EM files OK OK
Changing file names OK Not possible
Reading file memory data OK Not possible
Deleting files OK OK
Coping files OK Not possible
Deleting/Creating subdirectories OK Not possible
; Programming . ; .
Create user program file. Device (P)rogralmmmg Create 1/0 memory file Programming Programming
onsole Device Console
] e ]
CPU Unit CPU Unit  —

Memory Card

User

program @Jr?srétﬂ.é :
/0 {imemeny
memor
]L "1 EM file memory © y‘_L

PUser !
i program;

’ Memory Card ’ |

o -1~ EM file memory

Note 1. Create any required volume labels using Windows Explorer.

File memory uses the Windows quick format. If formatting error occur for
Memory Cards, they can be formatted with the normal Windows format
command.

3. The time and date for files written for transfers from the CPU Unit to file
memory will be taken from the clock in the CPU Unit.

Create parameter file. Programming Programming
Device Console
CPU Unit I__
Memory Card
JParameter

Parameter Gf?ﬁ ........ :
area

Parameters H— EM file memory

area,. ...

A Memory Card can be installed in a computer’'s PLC Card slot with the HMC-
AP001 Memory Card Adapter (sold separately). Installing a Memory Card in
the computer allows the files in the card to be read and written by other pro-
grams, such as Windows Explorer.

202



Manipulating Files

Section 5-2

CX-Programmer

HMC-AP0O0O1 Memory Card Adapter

Memory Card

A »

1,2,3... 1.

or

Computer's PC Card slot

Use the following procedure for file memory operations.

Double-click the Memory Card icon in the Project Window with the CPU
Unit online. The Memory Card Window will be displayed.

To transfer from the CPU Unit to file memory, select the program area, 1/0
memory area, or parameter area in the project work space, select Transfer
from the File Memory, and then select transfer to the Memory Card or to

EM file memory.

To transfer from file memory to the CPU Unit, select file in file memory
and then drag it to the program area, I/O memory area, or parameter area
in the project work space and drop it.

Note Use project transfer operations to create and read symbol table files (SYM-
BOLS.SYM) and comment files (COMMENTS.CMT) on the CX-Programmer.

Programming Console

s

The following operations can be performed.

AR, DM, EM, or STD.

end addresses.

Item 1 Item 2 Iltem 3 Item 4 Item 5
0: Send 0: PLC to Memory Card | Select OBJ, CIO, HR, WR, | Set transfer start and Media type, file name
AR, DM, EM, or STD. end addresses.
1: Memory Card to PLC | Select OBJ, CIO, HR, WR, | Set transfer start and Media type, file name
AR, DM, EM, or STD. end addresses.
1: Verify Select OBJ, CIO, HR, WR, | Set comparison startand | Media type, file name

203




Manipulating_j Files

Section 5-2

Item 1 | Item 2 Item 3 Item 4 Item 5
2: Initialize Enter 9713 (Memory Card) |---
or 8426 (EM file memory).
3: Delete Select OBJ, CIO, HR, WR, | Media type, file name
AR, DM, EM, or STD.
Note The file types are shown in the following table.
Symbol File type
OBJ Program file (.OBJ)
CIO Data file (.IOM) | CIO Area
HR HR Area
WR WR Area
AR Auxiliary Area
DM DM Area
EMO_ EM Area
STD Parameter file (.STD)
5-2-2 FINS Commands

204

The CPU Unit can perform the following file memory operations when it
receives the proper FINS command. These are similar to the Programming

Device functions.

FINS Commands via Host Link

A computer connected via a Host Link System can send a FINS command
with a Host Link header and terminator.

CPU Unit

o |
memory

User
program

Parame-|
ter area

Host computer

]

FINS Command from Another Network PLC
Another PLC on a network can send FINS command using CMND(490).

Another PLC on
the network

CMND
instruction|

CPU Unit

FINS command

Memory Card

— EM file memory

I/0
memary.

User
program

Parame-|
ter area

: | EM file memory

..............................

FINS command



Manipulating Files

Section 5-2

Note

A computer on an Ethernet Network can read and write file memory (Memory
Cards or EM file memory) on a CPU Unit through an Ethernet Unit. Data in
files can be exchanged if the host computer functions as an FTP client and
the CS/CJ-series PLC functions as an FTP server.

[]

Host computer (FTP client)

Ethernet Unit

L

I Ethernet ;LI-]

Computer to Memory Card

Memory Card or
File EM file memory

1
I
FTP command

Memory Card or
EM file memory

Memory Card to computer

Memory Card or
File EM file memory

The following FINS commands can be used to perform a variety of functions,
including reading and writing files.

Command Name Description
2201 Hex |FILE NAME READ Reads file memory data.
2202 Hex | SINGLE FILE READ Reads a specified length of file data from a
specified position within a single file.
2203 Hex |SINGLE FILE WRITE | Writes a specified length of file data from a
specified position within a single file.
2204 Hex |FILE MEMORY FOR- |Formats (initializes) the file memory.
MAT
2205 Hex |FILE DELETE Deletes specified files stored in the file mem-
ory.
2207 Hex | FILE COPY Copies files from one file memory to another
file memory.
2208 Hex | FILE NAME CHANGE | Changes a file name.
220A Hex |MEMORY AREA FILE |Transfers or compares data between the 1/0
TRANSFER memory area and the file memory.
220B Hex | PARAMETER AREA Transfers or compares data between the
FILE TRANSFER parameter area and the file memory.
220C Hex | PROGRAM AREAFILE | Transfers or compares data between the UM
TRANSFER (User Memory) area and the file memory.
2215 Hex |CREATE/DELETE Creates and deletes subdirectories.
SUBDIRECTORY

Note The time from the CPU Unit’s internal clock is used to date files created in file
memory with the 220A, 220B, 220C, and 2203 commands.

5-2-3 FREAD(700), FWRIT(701), and CMND(490)

Note

The FWRIT(701) (WRITE DATA FILE) instruction can be used to create a data
file containing the specified I/O memory data in a Memory Card or EM file
memory. It can also add to or overwrite from any point in existing files.

The FREAD(700) (READ DATA FILE) instruction will read I/O memory data
from a specified location from a data file in a Memory Card or EM file memory
and write it to the specified portion of I/O memory. It can read from any point
in the specified file.

These instructions do not transfer the specified file, but rather the specified
amount of data beginning at the specified start position in the file.

205



Manipulating_j Files Section 5-2

The CMND(490) (DELIVER COMMAND) instruction can be executed to issue
a FINS command to the CPU Unit itself to perform file operations. File opera-
tions such as file formatting, deletion, copying, and renaming can be per-
formed on files in the Memory Card or EM file memory (Not supported by CS-
series CS1 CPU Units that are pre-EV1).

FREAD(700)/FWRIT(701): Transfers CMND(490): File memory operations
between I/O memory and file memory (Not possible for CS-series CPU Units that are pre-EV1)
CPU Unit CPU Unit

FREAD/FWRIT CMND

instruction instruction

Operation
Memory Card
Memory Card Operation
/O memory 1/0 memory|
L— EM file memory v | {— EM file memory

FREAD(700)/FWRIT(701) Instructions

FREAD(700) and FWRIT(701) transfer data between 1/0 memory and file
memory. All CJ CPU Units can transfer binary data (.IOM files) and the V1
CPU Units can also transfer ASCII files (.TXT and .CSV files).

Name Mnemonic Description
READ DATA FREAD(700) Reads specified data file data or data elements
FILE to specified I/O memory.
WRITE DATA FWRIT(701) Uses specified /0O memory area data to create
FILE a specified data file.

206



Manipulating_] Files

Section 5-2

Transferring ASCII Files
(Not supported by CS-
series CS1 CPU Units that
are pre-EV1)

ASCII files can be transferred as well as binary files, so the third and fourth
digits of the instruction’s control word operand (C) indicate the type of data file
being transferred and the number of fields between carriage returns.

0: No returns

8: Return every 10 fields
9: Return every 1 field
A: Return every 2 fields
B: Return every 4 fields
C: Return every 5 fields
D: Return every 16 fields

Bitsin C Settings Programming Device
limitations

12to 15 |Data type If CX-Programmer V1.1 or an
0: Binary (.IOM) earlier version is being used,
1: Non-delimited words (.TXT) only 0 Hex (.IOM files) can be
2: Non-delimited double-words (.TXT) specified directly.
3: Comma-delimited words (.CSV) If CX-Programmer V1.2 or a
4: Comma-delimited double-words (.CSV) | |ater version (or a Program-
5: Tab-del!m!ted words (.TXT) ming Console) is being used,
6: Tab-delimited double-words (.TXT) the control word bits can be

set to between 0 and 6 Hex.
08to 11 |Carriage returns If CX-Programmer V1.1 or an

earlier version (or a Program-
ming Console) is being used,
only 0 Hex (no returns) can
be specified directly.

If CX-Programmer V1.2 or a
later version is being used,
the control word bits can be

set to 0 Hex or to between 8
and D Hex.

CX-Programmer V1.1 or Earlier Version:

Indirectly Setting the Control Word

When V1.1 or an earlier version of CX-Programmer is being used, ASCII files
cannot be transferred with FREAD(700) and FWRIT(701) if a constant is input
for the control word to specify the data type and carriage return treatment.
Only binary data with no carriage returns can be transferred if a constant is
used.

ASCII files can be transferred with FREAD(700) and FWRIT(701), however,
by indirectly setting the control word. Write the desired control word setting to
a word and specify that word as the control word in FREAD(700) or
FWRIT(701), as shown on the left in the following diagram.

CX-Programmer Versions V1.1 and Earlier

A34313

—{——H

Execution File Memory
condition  Operation Flag

MOV

#1800

WOOO| \Write #1800

to W000. )
CX-Programmer Versions V1.2 and Later

FWRIT

A34313
)4

—'l A

FWRIT

WO000 Execution File Memory

#1800] gpecify #1800 as C.

Specify W000 condition Operation Flag
D01000| as C. D01000

D02000 D02000

D03000 D03000

Note The time from the CPU Unit’s internal clock is used to date files created in file

1,23..

memory with FWRIT(701).

Only one file memory operation may be executed at a time, so FREAD(700)
and FWRIT(701) must not be executed when any of the following file memory
operations are being performed:

1. Execution of FREAD(700) or FWRIT(701)

207




Manipulating_j Files

Section 5-2

Related Auxiliary Bits/Words

208

2. Execution of CMND(490) to send a FINS command to the CPU Unit itself
3. Replacement of the entire program by Auxiliary Area control bit operations
4. Execution of a simple backup operation

Use the File Memory Operation Flag (A34313) for exclusive control of file
memory instructions to prevent them from being executed while another file
memory operation is in progress.

When FREAD(700) is being executed, the File Read Error Flag (A34310) will

be turned ON and the instruction won'’t be executed if the specified file con-
tains the wrong data type or the file data is corrupted. For text or CSV files,
the character code must be hexadecimal data and delimiters must be posi-
tioned every 4 digits for word data and every 8 digits for double-word data.
Data will be read up to the point where an illegal character is detected.

Name Address Operation
Memory Card Type |A34300to | Indicates the type of Memory Card, if any, that is
A34302 |installed.

EM File Memory For- | A34306 | ON when a format error occurs in the first EM

mat Error Flag bank allocated for file memory. OFF when format-
ting is completed normally.

Memory Card For- A34307 | ON when the Memory Card is not formatted or a

mat Error Flag formatting error has occurred.

File Write Error Flag | A34308 | ON when an error occurred when writing to the
file.

File Write Impossi- |A34309 | ON when the data couldn’t be written because the

ble Flag file was write-protected or there was insufficient
free memory.

File Read Error Flag | A34310 | ON when afile could not be read because its data
was corrupted or if it contains the wrong data type.

No File Flag A34311 | ON when data could not be read because the
specified file doesn't exist.

File Memory Opera- |A34313 | ON for any of the following:

tion Flag The CPU Unit is processing a FINS command
sent to itself using CMND(490).
FREAD(700) or FWRIT(701) is being executed.
The program is being overwritten using an Auxil-
iary Area control bit.
A simple backup operation is being performed.

Accessing File Flag |A34314 |ON when file data is actually being accessed.

Memory Card A34315 | ON when a Memory Card has been detected.

Detected Flag (Not supported by CS-series CS1 CPU Units that
are pre-EV1)

Number of Itemsto |A346to | These words indicate the number of words or

Transfer A347 fields remaining to be transferred (32 bits).

When a binary (.IOM) file is being transferred, this
number is decremented each time a word is read.

When a text or CSV file is being transferred, this
number is decremented each time a field is trans-
ferred.




Manipulating_] Files

Section 5-2

CMND(490): DELIVER COMMAND

1,23..

FINS Commands Related

to File Memory

Note

Related Auxiliary Bits/Words

CMND(490) can be used to issue a FINS command to the local CPU Unit
itself to perform file memory operations such as formatting or deleting files.
Make the following settings in CMND(490)’s control words when issuing a file-
memory FINS command to the local PLC:

1. Setthe destination network address to 00 (local network) in C+2.

2. Setthe destination unit address to 00 (PLC’s CPU Unit) and the destination
node to 00 (within local node) in C+3.

3. Set the number of retries to 0 in C+4. (The number of retries setting is in-
valid, so set it to 0.)

Refer to 5-2-2 FINS Commands for information on FINS commands.

There are other FINS commands related to file memory that are not shown in
the following table which can be executed. Refer to the Communications Com-
mand Reference Manual (W342) for details on FINS commands.

CMND(490) cannot be executed to the local CPU Unit if another CMND(490)
instruction is being executed to another CPU Unit, FREAD(700) or
FWRIT(701) is being executed, the program is being replaced by an Auxiliary
Area control bit operation, or a simple backup operation is being executed. Be
sure to include the File Memory Operation Flag (A34313) as a normally
closed condition to prevent CMND(490) from being executed while another
file memory operation is in progress.

If CMND(490) cannot be executed for the local CPU Unit, the Error Flag will
be turned ON.

Detected Flag

Name Address Operation
File Memory Opera- |A34313 ON for any of the following:
tion Flag « The CPU Unit is processing a FINS command sent to itself using CMND(490).
* FREAD(700) or FWRIT(701) is being executed.
» The program is being overwritten using an Auxiliary Area control bit.
« A simple backup operation is being performed.
Memory Card A34315 ON when a Memory Card has been detected. (Not supported by CS-series CS1 CPU

Units that are pre-EV1)

209



Manipulating_j Files

Section 5-2

The following example shows how to use CMND(490) to create a subdirectory
in the Memory Card.

S+1;
S+2;
S+3:
S+4:
S+5;
S+6:
S4+7:
S+8:
S+9:
S+10:
S+11:
S+12;

C+1:
C+2:
C+3:
C+4:
C+5:

000000 A20207 A34313 @CMND | When 000000 and A20207 are ON and A34313 is
-1 1 1 v di OFF, CMND(490) issues FINS command 2215

(CREATE/DELETE SUBDIRECTORY) is sent to

Network Instruction  File Memory S DO0006 | the local CPU Unit and the response is stored in

Enabled Flag Operation Flag D00100 and D0O0101.
(for port 7) D D00100 _ _
In this case, the FINS command creates a subdi-
c D00000 rectory named "CS1" within the OMRON" directory

DO00006
D00007
D00008
DO0009
D00010
DO0011
D00012
D00013
D00014
D00015
D00016
D00017
D00018

D00000
D00001
D00002
D00003
D00004
D00005

-
w

o)
~

in the CPU Unit's Memory Card. The response is
composed of the 2-byte command code (2215) and
the 2-byte response code.

o

Command code: 2215 Hex (CREATE/DELETE SUBDIRECTORY)

Disk number: 8000 Hex (Memory Card)

Parameter: 0000 Hex (Create subdirectory.)

Subdirectory name: CS10LLICICICLOICI]
([1: a space)

Directory length: 0006 Hex (6 characters)

Directory path: \OMRON

AL IOOINININ|IN (WA |[O]oIN

Tiololelo|mio|ol=lw|o|o|m

Al (A|OINvININININVIO|IO|O]|—

miN Mo OO |0 |O|o|w]|o o |n

7

(=]

Number of bytes of command data: 001A Hex (26 bytes)

Number of bytes of response data: 0004 Hex (4 bytes)

Destination address: 0000 Hex (local network)

00 Hex (local node) and 00 Hex (CPU Unit)

Response requested, communications port 7, O retries

olo|o|o|o (o

oN|o|O|o|o

Oo|I0|C|O]|—=

olo|jo|o|~|>

Response monitor time: FFFF Hex (6,553.5 s)

Note There are other FINS commands that can be sent to the local PLC in addition

to the ones related to file memory operations that are listed in the table above.
The File Memory Operation Flag must be used to prevent simultaneous exe-
cution of these other FINS commands, too.

5-2-4 Replacement of the Entire Program During Operation

210

(Not supported by CS-series CS1 CPU Units that are pre-EV1)

The entire program can be replaced during operation (RUN or MONITOR
mode) by turning ON the Replacement Start Bit (A65015). The specified file
will be read from the Memory Card and it will replace that program will replace
the executable program at the end of the current cycle. The replacement Pro-
gram Password (A651) and Program File Name (A654 to A657) must be



Manipulating_] Files Section 5-2

recorded in advance and the specified program file must exist on the Memory
Card in order to replace the program during operation.

i)

User program

CPU Unit

Replacement

Memory Card

(,j

Replacement Start Bit (A65015)
turned from OFF to ON.

Specifies
program
Replacement Program
File Name
Entire user program
N
Normal processing
> The entire program
is replaced.
AB5015
-"-m O Replacement Rt i
Execution Start Bit
condition The CPU Unit wil
execute the in-
structions remain-
ing in the cycle af-
; ter the Replace-

Normal processing ment Start Bit is

turned ON.
END -1 <
(In the last task)

The program can also be replaced when program execution is stopped (PRO-
GRAM mode) by turning ON the Replacement Start Bit from a Programming
Device.

Note The replacement program file cannot be read from EM file memory.

The Replacement Start Bit (A65015) can be turned ON at any location (pro-
gram address) in the program. The CPU Unit will execute the instructions
remaining in the cycle after the Replacement Start Bit goes from OFF to ON.

The program will not be executed while the program is being replaced. After
the program has been replaced, operation will be started again just as if the
CPU Unit were switched from PROGRAM mode to RUN or MONITOR mode.

The program will be replaced at the end of the cycle in which the Replace-
ment Start Bit was turned from OFF to ON, i.e., after END(001) is executed in
the last task in the program.

211



Manipulating_j Files

Section 5-2

Note

Replacement File

Conditions Required for
Program Replacement

CPU Operation during
Program Replacement

Operations Continuing

Note

during and after Program

Replacement

212

Note

1. Turn ON the IOM Hold Bit (A50012) if you want to maintain the status of
I/O memory data through the program replacement.

Turn ON the Forced Status Hold Bit (A50013) if you want to maintain the
status of force-set and force-reset bits through the program replacement.

2. Ifthe IOM Hold Bit (A50012) is ON before the program is replaced, the sta-
tus of bits in I/O memory will be maintained after program replacement. Be
sure that external loads will operate properly with the same I/O memory
data.

Likewise, if the Forced Status Hold Bit (A50013) is ON before the program
is replaced, the status of force-set and force-reset bits will be maintained
after program replacement. Be sure that external loads will operate prop-
erly with the same force-set and force-reset bits.

The program file specified in the Program File Name (A654 to A657) will be
read from the Memory Card and will replace the existing program at the end of
the cycle in which the Replacement Start Bit (A65015) is turned from OFF to
ON.

File File name and | Specifying the replacement file name (¥*******)
extension

Program file |[IIN .OBJ |Write the replacement program file name to A654

through A657 before program replacement.

The following conditions are required in order to replace the program during
operation.

» The program password (A5A5) has been written to A651.

e The program file specified in the Program File Name words (A654 to
AB657) exists in the Memory Card'’s root directory.

» The Memory Card has been detected by the CPU Unit. (A34315 ON)
* No fatal errors have occurred.
 No file memory operations are being executed. (A34313 OFF)
« Data is not being written to the Program Area.
» The access right is available. (For example, data is not being transferred
from the CX-Programmer to the PLC.)
The program may be transferred in any operating mode.

The CPU Unit's operation will be as follows during program replacement:
» Program execution: Stopped
* Cycle time monitoring: No monitoring

When the IOM Hold Bit (A50012) is ON, the data in the following memory
areas will be maintained: the CIO Area, Work Area (W), Timer Completion
Flags (T), Index Registers (IR), Data Registers (DR), and the current EM bank
number.

Timer PVs will be cleared during program replacement.

If the IOM Hold Bit is ON when the program is transferred, loads that were
being output before program replacement will continue to be output after
replacement. Be sure that external loads will operate properly after program
replacement.

The status of force-set and force-reset bits will be maintained through the pro-
gram replacement if the Forced Status Hold Bit (A50013) is ON.

Interrupts will be masked.



Manipulating_] Files

Section 5-2

Operations after
Program Replacement

Time Required for

If data tracing is being performed, it will be stopped.

Instruction conditions (interlocks, breaks, and block program execution) will be
initialized.

Differentiation Flags will be initialized whether the IOM Hold Bit is ON or OFF.

The status of the cyclic tasks depends upon their operation-start properties.
(Their status is the same as it would be if the PLC were switched from PRO-
GRAM to RUN/MONITOR mode.)

The First Cycle Flag (A20011) will be ON for one cycle after program execu-
tion resumes. (The status is the same as it would be if the PLC were switched
from PROGRAM to RUN/MONITOR mode.)

Program Replacement Size of entire program | Peripheral servicing time | Approx. time required for
set in PLC Setup program replacement
60 Ksteps Default (4% of cycle time) |6s
250 Ksteps 25s
Related Auxiliary Bits/Words
Name Address Operation

File Memory Operation Flag

A34313 ON for any of the following:
The CPU Unit has sent a FINS command to itself using CMND(490).
FREAD(700) or FWRIT(701) are being executed.

The program is being overwritten using an Auxiliary Area control bit
(A65015).

A simple backup operation is being performed.

Memory Card Detected Flag
(Not supported by CS-series
pre-EV1 CS1 CPU Units)

A34315 ON when a Memory Card has been detected.

IOM Hold Bit

A50012 When this bit is ON, the contents of I/O memory are retained through pro-
gram replacement.

Forced Status Hold Bit

A50013 When this bit is ON, the status of force-set and force-reset bits is main-
tained through program replacement.

Replacement Completion Code
(Not supported by CS-series
pre-EV1 CS1 CPU Units)

A65000 to | Codes for normal program replacement (A65014 OFF):
A65007 01 Hex: The program file (.OBJ) replaced the program.
Codes for incomplete program replacement (A65014 ON):
00 Hex: A fatal error occurred.
01 Hex: A memory error occurred.
11 Hex: The program is write-protected.
12 Hex: The program password in A651 is incorrect.
21 Hex: A Memory Card is not installed.
22 Hex: The specified file does not exist.
23 Hex: The specified file is too large (memory error).
31 Hex: One of the following operations was being performed:
« A file memory operation was being performed.
» The program was being written.
» The operating mode was being changed.

Replacement Error Flag
(Not supported by CS-series
pre-EV1 CS1 CPU Units)

A65014 Turned ON when an error occurred while trying to replace the program
after A65015 was turned from OFF to ON.
Turned OFF the next time that A65015 is turned from OFF to ON again.

213



Manipulating_j Files Section 5-2

Name Address Operation
Replacement Start Bit A65015 If this bit has been enabled by the setting the Program Password (A651)
(Not supported by CS-series to ASA5 Hex, program replacement will start when this bit is turned from
pre-EV1 CS1 CPU Units) OFF to ON. Do not turn this bit from OFF to ON again during program

replacement.

This bit is automatically turned OFF when program replacement is com-
pleted (normally or with an error) or the power is turned ON.

The status of this bit can be read from a Programming Device, PT, or host
computer to determine whether program replacement has been com-
pleted or not.

Program Password A651 Write the password to this word to enable program replacement.
(Not supported by CS-series ASA5 Hex: Enables the Replacement Start Bit (A65015).
pre-EV1 CS1 CPU Units) Other value: Disables the Replacement Start Bit (A65015).

This bit is automatically turned OFF when program replacement is com-
pleted (normally or with an error) or the power is turned ON.

Program File Name A654 to B : : .

. efore starting program replacement, write the file name of the
(Not supported by CS-series A657 replacement program file in these words in ASCII. Just write the
pre-EV1 CS1 CPU Units) 8-character filename; the .OBJ extension is added automatically.

Write the characters in order from A654 (most significant byte first). If
the file name has fewer than 8 characters, pad the remaining bytes with
space codes (20 Hex). Do not include any NULL characters or spaces
within the file name itself.

The following example shows the data for the program file ABC.OBJ:

15 0
A654 41 42
A655 43 20
A656 20 20
A657 20 20

Example Program 1

Store program files ABC.OBJ and XYZ.OBJ in the Memory Card and select
one program or the other depending upon the value of DO0000. Set DO0O000
to #1234 when selecting ABC.OBJ or set it to #5678 when selecting
XYZ.0BJ.

214



Manipulating_] Files

Section 5-2

Start and execute another task to perform any processing required before pro-
gram replacement or IOM Hold Bit processing.

Main Task (Cyclic task number 0)

A20011
i vov
First Cycle Flag — Program version
— Version storage area
| | SET
Execution a
condition
A34311 A65015
_ﬁ Al)?/ 8 Replacement
Start Bit
No File Flag
MOV
#A5A5
A651
= Writes the file name
D00000 "ABC" in A654 to
#1234 AB57.
~ Writes the file name
D00000 "XYZ" in A654 to
#5678 AB57.
TKON
31

Main processing program

END

/\/

215



Manipulating_j Files

Section 5-2

Task protecting data during program replacement
(Cyclic task number 31, standby status at startup)

i

Processing to pro-

Always ON Flag

tect data before pro-
gram replacement
begins

A58812
IOM Hold Bit

Qutputs to required
loads during pro-
gram replacement.

END

/\—/

Example Program 2

Store program files for several devices and the program file for automatic
transfer at startup (AUTOEXEC.OBJ) in a Memory Card. When the PLC is
turned ON, the automatic transfer at startup file is read and that program is
replaced later with a program file for a different device.

AUTOEXEC.OBJ ABC.OBJ
A2(|)(|)11
1T MOV I I O
First Cycle Flag #A5A5
A651
Processing that determines
the type of device connected
and stores the corresponding .
file name. In this example, Overwrite
the file name "ABC" is written
in A654 to A657.
A34315 AB5015
11 O Replacement
I Start Bit — —
Memory Card
Detected Flag /\_/
END

/_\_/

5-2-5 Automatic Transfer at Startup

216

Automatic transfer at startup is used to read the user program, parameters,
and I/O memory data from a Memory Card to the CPU Unit when the power is

turned ON.
The following files can be read automatically to CPU Unit memory.

Note This function cannot be used to read EM file memory.



Manipulating Files

Section 5-2

File File name At startup Required for
automatic transfer
Program File AUTOEXEC.OBJ The contents of this file are automatically transferred and | Required on Memory
overwrite the entire user program including CPU Unit task | Card.
attributes.
Data File AUTOEXEC.IOM DM words allocated to Special 1/0 Units, CPU Bus Units, | Not required on

and Inner Boards (CS Series only). Memory Card.

The contents of this file are automatically transferred to
the DM Area beginning at D20000 when power is turned
ON. (See note 1.)

ATEXECDM.IOM

General-purpose DM words

The contents of this file are automatically transferred to
the DM Area beginning at DO0000 when power is turned
ON. (Not supported by CS-series CS1 CPU Units that are
pre-EV1) (See note 1.)

ATEXECEL]IOM

General-purpose DM words

The contents of this file are automatically transferred to
the EM Area beginning at EL1_00000 when power is
turned ON. (Not supported by CS-series CS1 CPU Units
that are pre-EV1)

Parameter Area
File

AUTOEXEC.STD

The contents of this file are automatically transferred and | Required on Memory

overwrite all initial settings data in the CPU Unit. Card.

Note

1.

If the data contained in AUTOEXEC.IOM and ATEXECDM.IOM overlap,
the data in ATEXECDM.IOM will overwrite any overlapping data trans-
ferred from AUTOEXEC.IOM since ATEXECDM.IOM is written later.

The program file (AUTOEXEC.OBJ) and parameter file (AUTOEXEC.STD)
must be on the Memory Card. Without these files, automatic transfer will
fail, a memory error will occur, and A40115 (Memory Error Flag: fatal error)
will turn ON. (It is not necessary for the /O memory file (AUTOEXEC.IOM)
to be present.)

It is possible to create the AUTOEXEC.IOM, ATEXECDM.IOM, and ATEX-
ECELLIOM files from a Programming Device (Programming Console or
CX-Programmer), with starting addresses other than D20000, D0O000O,
and E[]_00000 respectively. The data will be written beginning with the
correct starting address anyway, but do not specify other starting address-
es.

If DIP switch pin 7 is turned ON and pin 8 is turned OFF to use the simple
backup function, the simple backup function will take precedence even if
pin 2 is also ON. In this case, the BACKUPLIL] files will be transferred to
the CPU Unit but the automatic transfer at startup files will not be trans-
ferred. (Not supported by CS-series CS1 CPU Units that are pre-EV1.)
The automatic transfer at startup function can be used together with the
program replacement function. The Replacement Start Bit (A65015) can
be turned ON from program that is automatically transferred at startup to
replace it with another program.

217



Manipulating_j Files

Section 5-2

1,23..

DIP Switch on the Front
Panel of the CPU Unit

218

CPU Unit

User program

I/O memory

Parameter . [
data Write at startup

]/ Front panel DIP switch pin 2 ON

Memory Card

i» User program file (AUTOEXEC.OBJ) - Re-;
' quired :
i» Parameter area file (AUTOEXEC.STD) - :
¢ Required :
i 1/O memory file (AUTOEXEC.IOM, ATEX :
! ECDM.IOM, ATEXECELLIOM) - Not re- :
¢ quired

Procedure

1. Turn OFF the PLC power supply.

2. Turn ON DIP switch pin 2 on the front panel of the CPU Unit. Be sure that
pins 7 and 8 are both OFF.

Note The simple backup function will take precedence over the automat-
ic transfer at startup function, so be sure that pins 7 and 8 are OFF.

3. Inserta Memory Card containing the user program file (AUTOEXEC.OBJ),
parameter area file (AUTOEXEC.STD), and/or the I/O memory files (AU-
TOEXEC.IOM, ATEXECDM.IOM, and ATEXECEL]IOM) created with a
CX-Programmer. (The program file and parameter area file must be on the
Memory Card. The I/O memory files are optional.)

4. Turn ON the PLC power supply.

Note Automatic Transfer Failure at Startup
If automatic transfer fails at startup, a memory error will occur, A40115 will
turn ON, and the CPU Unit will stop. If an error occurs, turn OFF the power to
clear the error. (The error cannot be cleared without turning OFF the power.)

Pin(s) Name Setting
2 Automatic transfer at | ON: Execute automatic transfer at startup.
startup pin OFF: Do not execute automatic transfer at startup.
7 and 8 | Simple backup pins | Turn OFF both pins.




Manipulating Files Section 5-2
Related Auxiliary Bits/Words

Name Address Setting
Memory Error Flag A40115 ON when an error occurred in memory or there was an error in automatic

(Fatal error)

transfer from the Memory Card when the power was turned on (automatic
transfer at start-up).

The CPU Unit will stop and the ERR/ALM indicator on the front of the CPU
Unit will light.

Note: A40309 will be turned ON if the error occurred during automatic trans-
fer at startup. (The error cannot be cleared in this case.)

Transfer Error Flag

Memory Card Start-up A40309 ON when automatic transfer at start-up has been selected and an error

occurs during automatic transfer (DIP switch pin 2 ON). An error will occur if
there is a transfer error, the specified file does not exist, or the Memory Card
is not installed.

Note: The error can be cleared by turning the power off. (The error cannot
be cleared while the power is on.)

5-2-6  Simple Backup Function

This function is not supported by CS-series CS1 CPU Units that are pre-EV1.

Backing Up Data from the CPU Unit to the Memory Card

\/

Memory Card

To backup data, turn ON pin 7 on the CPU Unit’s DIP switch, press and hold
the Memory Card Power Supply Switch for three seconds. The backup func-
tion will automatically create backup files and write them to the Memory Card.
The backup files contain the program, parameter area data, and /0 memory
data. This function can be executed in any operating mode.

Pin 7: ON
Press and hold the

Memory Card Power
Switch for three seconds.

E \ (This example shows a

CS-series CPU Unit.)

Restoring Data from the Memory Card to the CPU Unit

Note

To restore the backup files to the CPU Unit, check that pin 7 is ON and turn
the PLC's power OFF and then ON again. The backup files containing the
program, parameter area data, and 1/O memory data will be read from the
Memory Card to the CPU Unit.

1. The backup function will override the automatic transfer at startup function,
so the backup files will be read to the CPU Unit when the PLC is turned ON
even if pin 2 of the DIP switch is ON.

2. Data will not be read from the Memory Card to the CPU Unit if pin 1 of the
DIP switch is ON (write-protecting program memory).

3. When the backup files are read from the Memory Card by the backup func-
tion, the status of I/O memory and force-set/force-reset bits will be cleared
unless the necessary settings are made in the Auxiliary Area and PLC Set-
up.

If the IOM Hold Bit (A50012) is ON and the PLC Setup is set to maintain
the IOM Hold Bit Status at Startup when the backup files are written, the

219



Manipulating_j Files

Section 5-2

status of I/O memory data will be maintained when data is read from the
Memory Card.

If the Forced Status Hold Bit (A50013) is ON and the PLC Setup is set to
maintain the Forced Status Hold Bit Status at Startup when the backup
files are written, the status of force-set and force-reset bits will be main-
tained when data is read from the Memory Card.

A CS1-H, CJ1-H, or CJ1IM CPU Unit will remain in PROGRAM mode after
the simple backup operation has been performed and cannot be changed
to MONITOR or RUN mode until the power supply has been cycled. After
completing the backup operation, turn OFF the power supply to the CPU
Unit, changes the settings of pin 7, and then turn the power supply back
ON.

File backups may take from several seconds to several minutes. Refer to
page 232 for information on execution times.

Comparing Data in the Memory Card and CPU Unit

To compare the backup files in the Memory Card with the data in the CPU
Unit, turn OFF pin 7 on the CPU Unit's DIP switch, and press and hold the
Memory Card Power Supply Switch for three seconds. The backup function
will compare the program, parameter area data, and I/O memory data in the
Memory Card with the corresponding data in the CPU Unit. This function can
be executed in any operating mode.

Backing up data to the Memory Card

Memory Card
Power Switch CPU Unit

o

Program

|//O memory

Memory
Card

Parameter
area

Pin 7: ON

Note

220

Restoring data from the Memory Card Comparing data to the Memory Card
Memory Card
CPU Unit Power Switch CPU Unit
Power ON__ \[
Program g’ Program
Memory Memory
Card Compare | Card
I/0 memory 1/O memory| [L
Parameter Parameter |«
area area
Pin 7: ON Pin 7: OFF

The following table provides a summary of the simple backup operations.

Backup operation Pin Procedure
status
Pin 7
Backing up data from the CPU ON Press and hold the Memory Card
Unit to the Memory Card Power Switch for three seconds.
Restoring data from the Memory | ON Turn the PLC OFF and ON again.
Card to the CPU Unit (See note 1.)
Comparing data between the OFF Press and hold the Memory Card
CPU Unit and the Memory Card Power Switch for three seconds.
1. Refer to Verifying Backup Operations with Indicators on page 223 for de-
tails on the results of read, write, and compare operations.
2. Referto 5-3-2 Operating Procedures for guidelines on the time required for

Memory Card backup operations.



Manipulating Files Section 5-2
Backup Files
Data Files
File name and Data area and range of Backup from | Restore from Comparing | Files required
extension addresses stored I/O memory to | Memory Card | Memory Card when
Memory Card | to I/O memory | to /O memory | restoring data
(creating files)
CPU Unit Cs/CJ CS1/ | CS1-H/
CJ1 | CJ1-H
BACKUP.IOM DM D20000 to Yes Yes Yes Required in
D32767 Memory Card
BACKUPIO.IOR CIO 0000 to 6143 Yes .4 Yes Required in
(Including forced Memory Card
bit status.)
WR WO000 to W511 Yes A Yes
(Including forced
bit status.)
HR HOO0O to H511 Yes Yes Yes -
AR A000 to A447 Yes
A448 to A959 Yes Yes Yes
Timerl TOO0O0O to T4095 Yes Yes4 Yes -
Counter! |CO0000 to C4095 | Yes Yes Yes
BACKUPDM.IOM DM D00000 to Yes Yes Yes Required in
D19999 Memory Card
BACKUPEL.lIOM23 |EM ELJ]_00000 to Yes Yes Yes Required in
E[]_32767 Memory Card
(must match
CPU Unit)
Note 1. The Completion Flags and PVs are backed up.

2. The [ represents the bank number and the number of banks depends
upon the CPU Unit being used.

When the BACKUPELILIOM files in the Memory Card are restored to the
CPU Unit, the files are read in order beginning with bank 0 and ending with
the maximum bank number in the CPU Unit. Excess BACKUPELLIOM files
will not be read if the number of banks backed up exceeds the number of
banks in the CPU Unit. Conversely, any remaining EM banks in the CPU
Unit will be left unchanged if the number of banks backed up is less than
the number of banks in the CPU Unit.

If a BACKUPELLIOM file is missing (for example: 0, 1, 2, 4, 5, 6), only the
consecutive files will be read. In this case, data would be read to banks 0,
1, and 2 only.

3. The EM Area data will be backed up as binary data. EM banks that have
been converted to file memory will be backed up along with EM banks that
have not.

EM file memory can be restored to another CPU Unit's EM Area only if the
BACKUPELLIOM files are consecutive and the number of backed-up EM
banks matches the number of banks in the CPU Unit. If the BACK-
UPELI.IOM files are not consecutive or the number of EM banks does not
match the number of banks in the CPU Unit, the EM file memory will revert
to its unformatted condition and the files in file memory will be invalid. (The
regular EM Area banks will be read normally.)

4. Normally, the contents of the CIO Area, WR Area, Timer Completion Flags,
Timer PVs, and the status of force-set/force-reset bits will be cleared when
the PLC is turned ON and BACKUPIO.IOR is read from the Memory Card.

221



Manipulating_j Files

Section 5-2

Program Files

If the IOM Hold Bit (A50012) is ON and the PLC Setup is set to maintain
the IOM Hold Bit Status at Startup when the backup files are written, the
status of I/O memory data will be maintained when data is read from the
Memory Card.

If the Forced Status Hold Bit (A50013) is ON and the PLC Setup is set to
maintain the Forced Status Hold Bit Status at Startup when the backup
files are written, the status of force-set and force-reset bits will be main-

tained when data is read from the Memory Card.

File name and Contents Backup from | Restore from Comparing Files required
extension I/O memory to | Memory Card | Memory Card when
Memory Card | to I/O memory | to I/O memory | restoring data
(creating files)
CPU Unit CS/CJ
BACKUP.OBJ Entire user program Yes Yes Yes Required in
Memory Card
Parameter Files
File name and Contents Backup from | Restore from Comparing Files required
extension I/O memory to | Memory Card | Memory Card when
Memory Card | to I/O memory | to I/O memory | restoring data
(creating files)
CPU Unit CS/CJ
BACKUP.STD PLC Setup Yes Yes Yes Required in
Registered I/O tables Memory Card
Routing tables
CPU Bus Unit setup
Etc.
Unit/Board Backup Files (CS1-H, CS1D, CJ1-H, or CJ1M CPU Unit Only)
File name and Contents Backup from | Restore from Comparing Files required
extension I/O memory to | Memory Card | Memory Card when
Memory Card | to I/O memory | to I/O memory | restoring data
(creating files)
CPU Unit CS1-H, CS1D, CJ1-H, or CJ1M CPU Unit only

BACKUPLIL.PRM
(where [ is the
unit address of the
Unit/Board being
backed up)

Backup data from the Unit or
Board with the specified unit
address (Specific contents
depends on the Unit or
Board.)

Yes

Yes

Yes

Required in
Memory Card
(See note 2.)

222

Note 1.

Unit addresses are as follows:

CPU Bus Units: Unit number + 10 Hex
Special /0 Units: Unit number + 20 Hex
Inner Board: E1 Hex

An error will not occur in the CPU Unit even if this file is missing when data
is transferred from the Memory Card to I/O memory, but an error will occur
in the Unit or Board if the data is not restored. Refer to the operation man-
ual for the specific Unit or Board for details on Unit or Board errors.



Manipulating Files

Section 5-2

Verifying Backup Operations with Indicators

The status of the Memory Card Power (MCPWR) indicator shows whether a
simple backup operation has been completed normally or not.

MCPWR Indicator

MCPWR i mBUSY

1
A OPEN

i

O
=

PERIPHERAL

(This example shows a
CS-series CPU Unit.)

Backup operation

Normal completion
(See note 1))

Error occurred

MCPWR status

MCPWR status

Error

Backing up data from the
CPU Unit to the Memory
Card

Lit -~ Remains lit while the
Memory Card Power Switch
is pressed. — Flashes once.
- Lit while writing. - OFF
after data is written.

Lit -~ Remains lit while the
Memory Card Power Switch
is pressed. — Remains
flashing. - Lights when the
Memory Card Power Switch
is pressed.

No files will be created with
the following errors:

Insufficient Memory Card
capacity (See note 2.)

Memory error in CPU Unit

1/0 bus error (when writing
data to a Unit or Board, CS1-
H, CS1D, or CJ1-H CPU
Units only)

Restoring data from the
Memory Card to the CPU
Unit

Lit when power is turned ON.
- Flashes once. - Lit while
reading. -~ OFF after data is
read.

Lit when power is turned ON.
- Flashes five times. -
Goes OFF

Data won't be read with the
following errors:

Program in Memory Card
exceeds CPU Unit capacity

Required backup files do not
exist in Memory Card.

Program can't be written
because it is write-protected
(Pin 1 of the DIP switch is
ON.)

Lit when power is turned ON.
- Flashes once. - Lit while
reading. - Flashes three
times. —» OFF after data is
read.

Caution: Data will be read
with the following error.

EM files and CPU Unit EM
banks do not match (non-
consecutive bank numbers
or max. bank number mis-
match).

223



Manipulating Files Section 5-2
Backup operation Normal completion Error occurred
(See note 1))
MCPWR status MCPWR status Error

Comparing data between the
CPU Unit and the Memory
Card

Lit — Remains lit while the
Memory Card Power Switch

is pressed. — Flashes once.

- Lit while comparing. -

OFF after data is compared.

Lit — Remains lit while the
Memory Card Power Switch
is pressed. —» Remains
flashing. - Lights when the
Memory Card Power Switch

The following comparison
errors can occur (See note
3.):

Memory Card and CPU Unit
data do not match.

Is pressed. Required backup files do not

exist in Memory Card.

EM files and CPU Unit EM
banks do not match (non-
consecutive bank numbers
or max. bank number mis-
match).

Memory error in CPU Unit

1/0 bus error (when compar-
ing data to a Unit or Board,
CS1-H, CS1D, or CJ1-H
CPU Units only)

Memory Card access error
(format error or read/write
error)

Common to all three backup |---
operations.

Reading:

Flashes five times. » Goes
OFF.

Writing or comparing:
Remains flashing. - Lights
when the Memory Card
Power Switch is pressed.

Note 1. When the backup operation is completed normally, power to the Memory
Card will go OFF when the MCPWR indicator goes OFF. If the Memory
Card will be used again, press the Memory Card Power Switch to supply

power and execute the desired operation.

2. When data is written for a simple backup operation from a CS1-H, CS1D,
CJ1-H, or CJ1M CPU Unit, errors for insufficient Memory Card capacity
can be checked in A397 (Simple Backup Write Capacity). If A397 contains
any value except 0000 Hex after the write operation has been executed,
the value will indicate the capacity that is required in the Memory Card in
Kbytes.

3. With CS1-H, CS1D, CJ1-H, or CJ1M CPU Units, the backup files for Units
and Boards are also compared.

224



Manipulating Files

Section 5-2

Related Auxiliary Bits/Words

(CS1-H, CJ1-H, CJ1M, or CS1D
CPU Units only)

Name Address Description

File Memory Operation Flag A34313 ON when any of the following are being performed. OFF when execution
has been completed.
* Memory Card detection
* CMND instruction executed for local CPU Unit
* FREAD/FWRIT instructions
« Program replacement via special control bits
» Simple backup operation
Wiring data to or verifying the contents of the Memory Card is not possi-
ble while this flag is ON.

EM File Memory Starting Bank | A344 When the CPU Unit starts reading from the Memory Card, it references
this value. If the maximum EM bank number of the BACKUPELL.IOM files
(maximum consecutive bank number counting from 0) matches the maxi-
mum bank number of the CPU Unit, the EM area will be formatted based
on the value in this word. If the maximum EM bank numbers do not
match, the EM Area will revert to its unformatted condition.

Network Communications A20200to |« Turns OFF when writing or comparing Memory Card data begins.

Instruction Enabled Flags (CS1- | A20207 « Turn ON when writing or comparing Memory Card data has been com-

H, CJ1-H, CJ1M, or CS1D CPU pleted.

Unit ly) (S te. . . .

nits only) (See note.) Unit and Board data cannot be written or compared if all of the Network

Communications Instruction Enabled Flags are OFF when Memory Card
write or compare operations are started and an error will occur if this is
attempted.

Network Communications Com- | A203 to Provide the results of communications with the Unit or Board when Mem-

pletion Code (CS1-H, CJ1-H, A210 ory Card write or compare operations are performed.

CJ1M, or CS1D CPU Units only)

(See note.)

Network Communications Error | A21900to |e Turns ON is an error occurs in communications with the Unit or Board

Flags (CS1-H, CJ1-H, CJ1M, or |A21907 when Memory Card write or compare operations are performed.

CS1D CPU Units only) (See « Remains OFF (or turns OFF) is no error occurs in communications with

note.) the Unit or Board when Memory Card write or compare operations are

performed.
Simple Backup Write Capacity | A397 Provides the data capacity in Kbytes that would be required on the Mem-

ory Card when writing fails for a simple backup operation, indicating that
a write error occurred because of insufficient capacity.

0001 to FFFF Hex: Write error (Indicates required Memory Card capacity
between 1 and 65,535 Kbytes.) (Cleared to 0000 Hex when successful
write is performed.)

0000 Hex: Write completed normally.

Note These flags are related for the CS1-H, CJ1-H, CJ1M, or CS1D CPU Units
because the CPU Unit will automatically using an available communications
port when writing or comparing data for a Memory Card.

Backing Up Board and Unit Data

Introduction

Outline

This function is supported only by CS1-H, CJ1-H, CJ1M, or CS1D CPU Units.

The following data is backed up from the CPU Unit by the CS1 and CJ1 CPU
Units for the simple backup operation: User program, parameter area, entire
I/O memory. In addition to the above data, the following data is also backed up
for the CS1-H, CJ1-H, CJ1M, or CS1D CPU Units: Data from specific Units
and Boards mounted to the PLC.

When the simple backup operation is used for a CS1-H, CJ1-H, CJ1M, or
CS1D CPU Unit, a Unit/Board backup file containing data from specific Units

225



Manipulating_j Files

Section 5-2

Application

Unit/Board Backup Files

Note

Applicable Units and Boards

Procedure

226

Note

and Boards is written to the Memory Card. The data is backed up separately
for each Unit and Board.

Memory Card power

DeviceNet Unit or othersu':)IOIy switch
specific Unit/Board \ CS1-H, CJ1-H, CJ1M, or CS1D CPU Unit

] Alldata
Simple é

backup i
data \évergg Memory Card

Compare ]
—

This function can be used to back up data for the entire PLC, including the
CPU Unit, DeviceNet Units, Serial Communications Units/Boards, etc. It can
also be used for Unit replacement.

The data from each Unit and Board is stored in the Memory Card using the
following file names: BACKUPLILIL.PRM. Here, “LI1" is the unit address of the
Unit or Board in hexadecimal.

Unit addresses are as follows:

CPU Bus Units: Unit number + 10 Hex
Special /0 Units: Unit number + 20 Hex
Inner Board: E1 Hex

These files are also used when reading from the Memory Card or comparing
Memory Card data.

For Unit and Board data to be backed up, the Unit/Board must also support
the backup function. Refer to the operation manual for the Unit/Board for
details on support.

Unit/Board Model numbers | Backup data (for CS1-H, CJ1-H, CJ1M, or
CS1D CPU Unit only)

DeviceNet Unit | CJ1IW-DRM21 Device parameters (all data in EEPROM in
the Unit)

(Although this is the same data as is backed
up from the Memory Card backup function

supported by the Unit or the DeviceNet Con-
figuration (Ver. 2.0), there is no file compati-

bility.
Serial Communi- | CS1W-SCU21-V1 | Protocol macro data
cations Unit CJIW-SCU41 (Including both standard system protocols

Serial Communi- | CS1W-SCB21-V1 |and user-defined protocols from the flash
cations Boards CS1W-SCB41-V1 | memory in the Unit or Board)

Data from the Units and Boards listed above will be automatically backed up
for the simple backup operation. There is no setting available to include or
exclude them.

The procedure for the simple backup operation is the same regardless of
whether or not data is being backed up from specific Units and Boards
(including writing, reading, and comparing).



Manipulating Files Section 5-2

m Backing Up Data

1,2,3... 1. Turn ON pin 7 on the CPU Unit’s DIP switch.
2. Press and hold the Memory Card Power Supply Switch for three seconds.

The backup data for the Units and Boards will be created in a file and
stored in the Memory Card with the other backup data.
Memory Card power

DeviceNet Unit or othefUPPlY switch )
specific Unit/Board CPU Unit

éﬂ All data
Memory Card

Backup |_: _j

When the Power Supply Switch is pressed, the MCPWR Indicator will flash

once, light during the write operation, and then go OFF if the write is com-
pleted normally.

Simple
backup data

m Restoring Data

1,2,3... 1. Turn ON pin 7 on the CPU Unit’s DIP switch.

2. Turn ON the PLC. The backup files will be restored to the Units and
Boards.

The backup data for the Units and Boards will be restored from the Mem-
ory Card to the Units and Boards.
DeviceNet Unit or other

specific Unit/Board CPU Unit
PLC power All data
. turned ON->|
Simple
backup
data Memory Card

) Restore T_ _j
) —]

When the power supply is turned ON, the MCPWR Indicator will flash

once, light during the read operation, and then go OFF if the read is com-
pleted normally.

m Comparing Data

1,2,3... 1. Turn OFF pin 7 on the CPU Unit's DIP switch.
2. Press and hold the Memory Card Power Supply Switch for three seconds.

The backup data on the Memory Card will be compared to the data in the
Units and Boards.

Memory Card power

DeviceNet Unit or other SUPPY Switch _
specific Unit/Board \ CPU Unit
1 Alldata
Simple é
backup
data Memory Card

A

Compare T_> I
~—

227



Using_j File Memory Section 5-3

When the Power Supply Switch is pressed, the MCPWR Indicator will flash
once, light during the compare operation, and then go OFF if the compare
is completed normally and the data is the same.

Note Confirm that the Units and Boards are running properly before attempting the
above operations. The write, read, and compare operations will not be per-
formed unless the Units and Boards are running properly.

5-3 Using File Memory
5-3-1 Initializing Media

Memory Cards

1,2,3... 1. Use a Programming Device, such as a Programming Console, to initialize
Memory Cards.

{
Memory Card
g1 |
CX-Programmer
Programming
Console
EM File Memory
1,2,3... 1. Use a Programming Device like a Programming Console and set EM file

memory settings in the PLC Setup to enable EM file memory, and then set
the specified bank number for EM file memory to 0 to C Hex.

Specify the starting
// bank number for
EM file memory.

CX-Programmer
Programming
Console
2. Use a FINS command or a Programming Device other than a Program-
ming Console to initialize EM file memory.

s l Initialize EM file memory.
CX-Programmer ‘ }
Programming
Console
Initializing Individual EM A specified EM bank can be converted from ordinary EM to file memory.

File Memory
Note The maximum bank number for CJ-series CPU Units is 6.

228



Usi ng File Memory

Section 5-3

Bank O Bank O

1. Set nin PLC Setup.

Bank . .
ankn _’ Bank n T 2. Use a Programming Device or

Converted to FINS command to format starting at n.
file memory

Bank C Bank C i 3. "n"is stored in A344.

EM used for file memory can be restored to ordinary EM status.

1. Set file memory OFF in PLC Setup.

Bank 0 Bank 0
2. If a Programming Device or FINS command
is used for formatting, memory starting at n
Bank n _} Bank n T will be cleared to 0000 Hex.
! Converted to Cleared
! file memory ) . I
3. FFFF Hex will be stored in A344 to indicate
Bank C Bank C L that there is no EM file memory.
Note: 1. Any file data present will be deleted at this time.
2. Only banks 0 to 6 can be specified for a CJ-series CPU Unit.
The start bank number for file memory can be changed.
Bank O Bank 0 1. Change nto m in PLC Setup.
Bank n 2. Use a Programming Device or FINS command
T —-} Bank n Clear to convert banks starting at m to file memory.
Bank m
Converted to Bank m . )
: file memory : Converted to Note: Banks n to m-1 will be cleared to 0000 Hex.
! , file memory ) .
3. m will be stored in A344.
Bank C Bank C
Note: 1. Any file data present will be deleted at this time.
2. Only banks 0 to 6 can be specified for a CJ-series
CPU Unit.
PLC Setup
Address Name Description Initial setting
136 EM File Memory 0000 Hex: None 0000 Hex
Starting Bank 0080 Hex: Starting at bank No. 0
008C hex: Bank No. C
The EM area starting from the specified bank num-
ber will be converted to file memory.
(Only banks 0 to 6 can be specified for a CJ-series
CPU Unit.)
Related Special Auxiliary Relay
Name Address Description

EM File Memory Starting Bank

A344

The bank number that actually starts the EM file
memory area at that time will be stored. The EM file
from the starting bank number to the last bank will be
converted to file memory. FFFF Hex will indicate that
there is no EM file memory.

Reading/Writing Symbol
Tables and Comments
using he CX-Programmer

1,2,3...

Use the following procedure to transfer symbol tables or comments created on
the CX-Programmer to and from a Memory Card or EM file memory.

1. Place a formatted Memory Card into the CPU Unit or format EM File Mem-

ory.

2. Place the CX-Programmer online.
3. Select Transfer and then To PLC or From PLC from the PLC Menu.

229




Using_j File Memory Section 5-3

4. Select either Symbols or Comments as the data to transfer.

5-3-2 Operating Procedures

Memory Cards

Using a Programming Device
1,2,3... 1. Insert a Memory Card into the CPU Unit.

[

ﬁ Memory Card

2. Initialize the Memory Card with a Programming Device.

Initialize

E]/

CX-Programmer

Programming
Console

3. Use a Programming Device to name the CPU Unit data (user program, 1/0O
memory, parameter area), and then save the data to Memory Card. (Use
a Programming Device to read the Memory Card file to the CPU Unit.)

Automatically Transferring Files at Startup

1,2,3... 1. Insert a Memory Card into the CPU Unit. (Already initialized.)

[

ﬁ Memory Card

2. Use a Programming Device to write the automatic transfer at startup files
to the Memory Card. These files include the program file (AUTOEX-
EC.OBJ), parameter area file (AUTOEXEC.STD), and I/O memory file
(AUTOEXEC.IOM or ATEXECLI1.IOM.)

Initialize

E]/

CX-Programmer

Programming
Console

Note A user program and parameter area file must be on the Memory Card.

3. Turn OFF the PLC power supply.
4. Turn ON DIP switch pin 2 (automatic transfer at startup).

230



Usi ng File Memory

Section 5-3

5.

6.

DIP switch pin 2 ON

Note If pin 7 is ON and pin 8 is OFF, the backup function will be enabled
and will override the automatic transfer at startup function. (Turn
OFF pins 7 and 8 for automatic transfer at startup.)

Insert the Memory Card into the CPU Unit.

[

ﬁ Memory Card

Turn ON the PLC power supply to read the file.

Using FREAD(700)/FWRIT(701)/CMND(490)

1,2,3...

1.
2.

Insert a Memory Card into the CPU Unit. (Already initialized.)

Use FWRIT(701) to name the file in the specified area of I/O memory and
then save the file to Memory Card.

Note A Memory Card containing TXT or CSV data files can be installed
into a personal computer's PLC card slot with an HMC-AP001
Memory Card Adapter and the data files can be read into a spread-
sheet program using standard Windows functions (Not supported
by CS-series CS1 CPU Units that are pre-EV1).

Use FREAD(700) to read the file from the Memory Card to I/O memory in
the CPU Unit.

Memory Card file operations can be executed by issuing FINS commands to
the local CPU Unit with CMND(490). (Not supported by CS-series CS1 CPU
Units that are pre-EV1)

Replacing the Program during Operation

1,23..

Simple Backup Function

1,2,3..

1,2,3...

1.
2.

3.

Insert a Memory Card into the CPU Unit. (Already initialized.)

Write the Program Password (A5A5 Hex) in A651 and the Program File
Name in A654 to A657.

Turn the Replacement Start Bit (A65015) from OFF to ON.

There are 3 backup operations: backing up data to the Memory Card, restor-
ing data from the Memory Card, and comparing data with the Memory Card.

Backing Up Data from the CPU Unit to the Memory Card

1.

2.
3.
4

Insert a Memory Card into the CPU Unit. (Already initialized.)
Turn ON pin 7 and turn OFF pin 8 on the CPU Unit’s DIP switch.
Press and hold the Memory Card Power Supply Switch for three seconds.

Verify that the MCPWR Indicator flashes once and then goes OFF. (Other
changes indicate that an error occurred while backing up the data.)

Restoring Data from the Memory Card to the CPU Unit

1.

Insert the Memory Card containing the backup files into the CPU Unit.

231



Using_j File Memory

Section 5-3

1,2,3...

Creating Variable Table
and Comment Files

Note

1,2,3...

EM File Memory

Using a Programming Device

Note

1,23..

232

2. Turn ON pin 7 and turn OFF pin 8 on the CPU Unit’s DIP switch.

3. The backup files will be restored when the PLC is turned ON.

4. Verify that the MCPWR Indicator flashes once and then goes OFF. (Other
changes indicate that an error occurred while restoring the data.)

Comparing Data in the Memory Card and CPU Unit

1. Insert the Memory Card containing the backup files into the CPU Unit.
Turn OFF pins 7 and 8 on the CPU Unit's DIP switch.
Press and hold the Memory Card Power Supply Switch for three seconds.

The data matches if the MCPWR Indicator flashes once and then goes
OFF

El SN

The MCPWR Indicator will flash if an error occurs while writing or comparing
data. This flashing will stop and the MCPWR Indicator will be lit when the
Memory Card Power Supply Switch is pressed.

The following table shows the time required for backup operations with a 20-
Kstep Program and 10-ms Cycle Time in RUN mode:

Mode Backing up Restoring Comparing
PROGRAM Approx. 50 s Approx. 30 s Approx. 7's
RUN Approx. 5 min Approx. 2 min Approx. 7s

The following table shows the time required for backup operations with a 30-
Kstep Program and 10-ms Cycle Time in RUN mode:

Mode Backing up Restoring Comparing
PROGRAM Approx. 50 s Approx. 30 s Approx. 7's
RUN Approx. 5min 30 s Approx. 2min 40 s Approx. 7 s

The following table shows the time required for backup operations with a 250-
Kstep Program and 12-ms Cycle Time in RUN mode:

Mode Backing up Restoring Comparing
PROGRAM Approx. 1 min 30 s Approx. 1 min 30 s Approx. 20 s
RUN Approx. 13 min Approx. 7 min 30 s Approx. 20 s

Use the following CX-Programmer procedure to create variable table files or
comment files on Memory Cards or in EM file memory.

1. Insert a formatted Memory Card into the CPU Unit or format EM file mem-
ory.

2. Place the CX-Programmer online.

3. Select Transfer and then To PLC or From PLC from the PLC Menu.

4. Select either Symbols or Comments as the data to transfer.

If a Memory Card is installed in the CPU Unit, data can be transferred only
with the Memory Card. (It will not be possible with EM file memory.)

=

Use PLC Setup to specify the starting EM bank to convert to file memory.
2. Use a Programming Device to initialize EM file memory.

3. Use a Programming Device to name the CPU Unit data (user program, 1/0O
memory, parameter area), and then save the data to EM file memory.




Usi ng File Memory

Section 5-3

4. Use a Programming Device to read the file in EM file memory to the CPU
Unit.

Using FREAD(700)/FWRIT(701)/CMND(490)

1,23..

1. Use PLC Setup to specify the starting EM bank to convert to file memory.
2. Use a Programming Device to initialize EM file memory.

3. Use FWRIT(701) to name the file in the specified area of I/O memory and
then save the file to EM file memory.

4. Use FREAD(700) to read the file from the EM file memory to I/O memory
in the CPU Unit.

EM file memory operations can be executed by issuing FINS commands to
the local CPU Unit with CMND(490).

5-3-3 Power Interruptions while Accessing File Memory

If a power interruption occurs while the CPU is accessing file memory (the
Memory Card or EM file memory) the contents of the Memory Card may not
be accurate. The file being updated may not be overwritten correctly and, in
some cases, the Memory Card itself may be damaged.

The affected file will be deleted automatically by the system the next time that
power is turned ON. The corresponding File Deletion Notification Flag
(A39507 for the Memory Card, A39506 for EM file memory) will be turned ON.
The flag will be turned OFF the next time that the power is turned OFF.

When a file is deleted, a deletion log file (DEL_FILE.IOM) will be created in
the root directory of the Memory Card or EM file memory. The deletion log file
can be read with CX-Programmer or FREAD(700) to check the following infor-
mation: The date that the file was deleted, the type of file memory (media) that
existed, the subdirectory, file name, and extension. When necessary, recreate
or recopy the deleted file.

The following diagram shows the structure of the deletion log file.

File size: 86 bytes

(t
T T T T T 17 T T T T

T T T T
Year | Month| Day Extension | Media 0 0
| | | | | | | | | {t | | | |
"
; i ile' L Deleted file's subdirector
Date of file deletion Deleted file's : u y
(6 bytes) extension and file name (73 bytes)
(4 bytes)

Media type (2 bytes)

0000: Memory Card
0001: EM file memory

233



Using_] File Memory

Section 5-3

234



SECTION 6
Advanced Functions

This section provides details on the following advanced functions: cycle time/high-speed processing functions, index
register functions, serial communications functions, startup and maintenance functions, diagnostic and debugging
functions, Programming Device functions, and the Basic 1/O Unit input response time settings.

6-1 CycleTime/High-speed Processing . .....ovvvviei i i 237
6-1-1 MinimumCycleTime. ... ... ... .. i 237
6-1-2 Maximum Cycle Time (Watch Cycle Time)................... 238
6-1-3 CycleTimeMonitoring .. ....... ..., 238
6-1-4 High-speed InpUtS. . .. ... oot e 239
6-1-5 Interrupt FUNCtions. .. ... . 239
6-1-6 /ORefreshingMethods. . .............. ... ... ... ... .. ... 240
6-1-7 Disabling Special I/0 Unit Cyclic Refreshing . ................ 241
6-1-8  Improving Refresh Response for CPU BusUnitData. . ......... 242
6-1-9 Maximum DatalLink I/OResponseTime. . ................... 244
6-1-10 Background EXeCUtion . ... ...t 246
6-1-11 Sharing Index and Data Registersbetween Tasks . ............. 252
6-2 INdeX REGISIEIS . ..o o i 254
6-2-1 What Arelndex Registers?. .. ...t 254
6-2-2 UsingIndex RegIStErS. .. ... oot 254
6-2-3  Processing Related to Index Registers . ... ........... ... ... 257
6-3  Serial CoOmMMUNICALIONS. . .. ..ottt e 263
6-3-1 Host Link Communications . . ..., 265
6-3-2  No-protocol Communications . .........c.vvvinernnnnnnnnn. 270
6-3-3 NTLink(LNMOdE) .....coviiiiiii e 271
6-3-4  Serial PLC Links (CJIM CPU UnitsOnly) ................... 272
6-4 Changing the Timer/Counter PV RefreshMode. . ..................... 278
B-4-1  OVEIVIBW. . oottt et e e e 278
6-4-2  Functional Specifications. ... ........ ... ... ... ... 279
6-4-3 BCD Mode/Binary Mode Selection and Confirmation .......... 280
6-4-4 BCD Mode/Binary Mode MnemonicsandData .. ............. 281
6-4-5  ReSHICHONS. .. ..o 282
6-4-6 Instructionsand Operands . ...........c.coo i, 283
6-5 Using a Scheduled Interrupt as a High-precision Timer (CJIM Only). ... .. 286
6-5-1  Setting the Scheduled Interrupt to Unitsof 0.1ms. ............. 286
6-5-2  Specifying aReset Start withMSKS(690) . ................... 287
6-5-3  Reading the Internal Timer PV with MSKR(692) .............. 287
6-6 Startup Settingsand Maintenance. . ...t 288
6-6-1 Hot Start/Hot Stop Functions. . ........... ... ... ... .. ... 288
6-6-2 StartupModeSetting . ...t 289
6-6-3 RUNOUIPUL ... oot e 290
6-6-4 Power OFF Detection Delay Setting . ....................... 290

235



236

6-8

6-10
6-11

6-6-5 Disabling Power OFF Interrupts. . ...,
6-6-6 Clock FUNCLiONS. . ... ..o
6-6-7 Program Protection .. ...........coviiiiniii i
6-6-8  Remote Programming and Monitoring. . .....................
6-6-9 UnitProfiles ........ ... i
6-6-10 FlashMemory . . ...t e
6-6-11 Startup Condition Settings . ...
Diagnostic FUNCLIONS. . . . ..o e
B-7-1  Error LOQ. .. ..ot e
6-7-2 Output OFF FuNnction . ........ ...,
6-7-3 FailureAlarmFunctions. ........ ... i
6-7-4 FailurePoint Detection . ...
6-7-5 Simulating SystemErrors. ...
6-7-6  Disabling Error Log Storage of User-defined FAL Errors ... ... ..
CPU Processing MOdeS. . . ..ottt
6-8-1 CPUProcessngModes. . ...
6-8-2 Pardlel Processing Mode and Minimum Cycle Times. ..........
6-8-3  Data Concurrency in Parallel Processing with

Asynchronous Memory ACCESS. . ..o v v vt it ie e
Peripheral Servicing Priority Mode. .. ......... ... . i
6-9-1 Periphera Servicing PriorityMode. . ........................
6-9-2 Temporarily Disabling Priority Mode Servicing. ...............
Battery-free Operation. .. ......ovi i
Other FUNCLIONS. . ... oo e
6-11-1 /OResponse TIMEeSEttingS . ..o oot vt
6-11-2 /O Area Allocation. . .. ...

290
291
292
294
294
295
296
298
298
299
299
300
302
302
303
303
308

308
308
309
311
314
316
316
317



Cycle Time/H ig_]h-speed Processi ng Section 6-1

6-1 Cycle Time/High-speed Processing

The following functions are described in this section
* Minimum cycle time function
» Maximum cycle time function (watch cycle time)
* Cycle time monitoring
* Quick-response inputs
* Interrupt functions
* 1/O refreshing methods
* Disabling Special I/0O Unit cyclic refreshing

» Improving the refresh response for data links and other CPU Bus Unit
data (CS1-H, CJ1-H, CJ1M, or CS1D CPU Units only)

» Reducing fluctuation in the cycle time through background execution of
data manipulations (CS1-H, CJ1-H, CJ1M, or CS1D CPU Units only)

6-1-1 Minimum Cycle Time

A minimum (or fixed) cycle time can be set in CS/CJ-series PLCs. (See note.)
Variations in I/O response times can be eliminated by repeating the program
with a fixed cycle time.

Note The cycle time can also be fixed for CS1-H, CJ1-H, CJ1M, or CS1D
CPU Units by using a Parallel Processing Mode.

The minimum cycle time (1 to 32,000 ms) is specified in the PLC Setup inl-

ms units.
Minimum cycle time Minimum cycle time Minimum cycle time
(Effective) (Effective) (Effective)

Actual cycle time Actual cycle time Actual cyclé time

If the actual cycle time is longer than the minimum cycle time, the minimum
cycle time function will be ineffective and the cycle time will vary from cycle to

cycle.

Minimum cycle time Minimum cycle time  Minimum cycle time

J o (Effective)

Actual cycle time Actual cycle time Actual cyclle time

(Effective) (Effective)
PLC Setup
Address Name Setting Default

208 Minimum Cycle Time |0001 to 7D00: 1 to 32,000 ms |0000 (no
Bits: 0 to 15 (1-ms units) minimum)

237



CycleTi me/Hig_;h-speed Processi ng Section 6-1

6-1-2 Maximum Cycle Time (Watch Cycle Time)

If the cycle time (see note) exceeds the maximum cycle time setting, the
Cycle Time Too Long Flag (A40108) will be turned ON and PLC operation will
be stopped.

Note Here, the cycle time would be the program execution time when us-
ing a Parallel Processing Mode for CS1-H, CJ1-H, or CJ1M CPU

Units.
PLC Setup
Address Name Setting Default

209 Enable Watch Cycle |0: Default (1s) 0001 (1)
Bit: 15 Time Setting 1: Bits 0 to 14
209 Watch Cycle Time 001 to FAO: 10 to 40,000 ms
Bits: 0 to 14 Setting (10-ms units)

(Enabled when bit 15

is setto 1.)

Auxiliary Area Flags and Words

Name Address Description
Cycle Time Too Long A40108 A40108 will be turned ON and the CPU Unit
Flag will stop operation if the cycle time exceeds the

watch cycle time setting. The “cycle time”
would be the program execution time when
using a Parallel Processing Mode for CS1-H,
CJ1-H, or CJIM CPU Units.

Note If the peripheral servicing cycle exceeds 2.0 s for CS1-H, CJ1-H, or CJ1M
CPU Units in parallel processing mode, a peripheral servicing cycle time
exceeded error will occur and the CPU Unit will stop operation. If this hap-
pens, A40515 (Peripheral Servicing Cycle Time Over Flag) will turn ON.

6-1-3 Cycle Time Monitoring

The maximum cycle time and present cycle time are stored in the Auxiliary
Area every cycle. For CS1-H, CJ1-H, or CJ1M CPU Units in parallel process-
ing mode, the program execution times will be stored.

Auxiliary Area Flags and Words

Name Address Description
Maximum Cycle Time |A262 and | Stored every cycle in 32-bit binary in the follow-
(program execution A263 ing range:
time for CS1-H, CJ1-H, 0 to 429,496,729.5 ms in 0.1 Ms units
or CJ1IM CPU Units in (0 to FFFF FFFF)
parallel processing
mode)
Present Cycle Time A264 and | Stored every cycle in 32-bit binary in the follow-
(program execution A265 ing range:
time for CS1-H, CJ1-H, 0 to 429,496,729.5 ms in 0.1 ms units
or CJ1IM CPU Units in (0 to FFFF FFFF)
parallel processing
mode)

A Programming Device (CX-Programmer or Programming Console) can be
used to read the average of the cycle times in the last 8 cycles.

238



Cycle Time/H ig_]h-speed Processi ng Section 6-1

1,2,3..

Reducing the Cycle Time

The following methods are effective ways to reduce the cycle time in CS/CJ-
series PLCs:

1. Puttasks that aren’t being executed in standby.
2. Jump program sections that aren’t being executed with JMP(004) and
JME(005).

For CS1-H or CJ1-H CPU Units in parallel processing mode, the peripheral
servicing cycle time will be stored in A268 (Peripheral Servicing Cycle Time)
each servicing cycle.

6-1-4 High-speed Inputs

When you want to receive pulses that are shorter than the cycle time, use the
CS1W-IDP01 High-speed Input Unit or use the high-speed inputs of the
C200H-1D501/1ID215 and C200H-MD501/MD115/MD215 High-density /O
Units.

The high-speed inputs can receive pulses with a pulse width (ON time) of
1ms or 4 ms for the C200H High-density Input Units and 0.1 ms for the
CS1W-IDPO01 High-speed Input Unit.

High-speed Input Unit or
High-density Input Unit

CS1W-IDPO01: 0.1 ms
CJ1W-IDPO01: 0.05 ms
C200H-1D501/ID215/MD501/MD115/MD215: 4 ms

6-1-5 Interrupt Functions

Note

Interrupt tasks can be executed for the following conditions. Refer to 4-3 Inter-
rupt Tasks for more details.

The CS1D CPU Units do not support interrupts. With the CS1D CPU Units,
interrupt tasks can be used only as extra cyclic tasks, i.e., no other type of
interrupt task can be used.

I/O Interrupts (Interrupt tasks 100 to 131)

An /O interrupt task is executed when the corresponding input (on the rising
edge of the signal or, for CS/CJ-series Interrupt Input Units, on either the ris-
ing or falling edge) is received from an Interrupt Input Unit.

Scheduled Interrupts (Interrupt tasks 2 and 3)

A scheduled interrupt task is executed at regular intervals.

Power OFF Interrupt (Interrupt task 1)
This task is executed when the power is interrupted.

External Interrupts (Interrupt tasks 0 to 255)

An external interrupt task is executed when an interrupt is received from a
Special /0 Unit, CPU Bus Unit, or Inner Board.

239



CycleTi me/Hig_;h-speed Processi ng Section 6-1

Note The built-in interrupt inputs and high-speed counter inputs on a CJ1M CPU
Unit can be used to activate interrupt tasks. Refer to the CJ Series Built-in I/O
Operation Manual for details.

6-1-6 1/0O Refreshing Methods

There are three ways that the CS/CJ-series CPU Units can refresh data with
Basic I/O Units and Special I/O Units: Cyclic refreshing, immediate refreshing,
and execution of IORF(097).

1. Cyclic Refreshing
I/O refreshing is performed after all of the instructions in executable tasks
have been executed. (The PLC Setup can be set to disable cyclic refreshing
of individual Special I/0O Units.)

v
—/E{EQ/J } Task
__/ﬂ)_-__‘_J } Task

END } Task
-.-....._—./

A

e

1/0 refreshing ‘ Actual I/0 data

2. Immediate Refreshing
When an address in the 1/0O Area is specified as an operand in the immediate-
refreshing variation of an instruction, that operand data will be refreshed when
the instruction is executed. Immediate-refreshing instructions can refresh data
allocated to Basic I/O Units.

Immediate refreshing is also possible for the built-in /O on CJ1M CPU Units.

Actual I/0O data

Immediate refreshing
ILD 000101 < CIO 0001

!OUT 000209

IMOV 0003 0004 <*————— CIO0003 |
— CI00004 |

=

Note 1. When the instruction contains a bit operand, the entire word containing
that bit will be refreshed. When the instruction contains a word operand,
that word will be refreshed.

2. Input and source data will be refreshed just before execution of the instruc-
tion. Output and destination data will be refreshed just after execution of
the instruction.

3. The execution times for immediate-refreshing variations are longer than
the regular variations of instructions, so the cycle time will be longer. Refer
to 10-5 Instruction Execution Times and Number of Steps in the Operation
Manual for details.

240



Cycle Time/H ig_]h-speed Processi ng Section 6-1

3. Execution of IORF(097) and DLNK(226)
m |ORF(097): /O REFRESH

IORF(097) can be used to refresh a range of I/O words upon execution of the
instruction. IORF(097) can refresh data allocated to Basic I/O Units and Spe-

cial /0 Units.
IORF St: Start word
St E: End word
The data in all words from St through E are
E refreshed when IORF(097) is executed.

The following example shows IORF(097) used to refresh 8 words of I/O data.

— IORF The 7 words from CIO 0010 through CIO 0016
are refreshed when IORF(097) is executed.
0010
0016

When a high-speed response is needed for input and output from a calcula-
tion, use IORF(097) just before and just after the calculation instruction.

Note IORF(097) has a relatively long instruction execution time and that execution
time increases proportionally with the number of words being refreshed, so it
can significantly increase the cycle time. Refer to 10-5 Instruction Execution
Times and Number of Steps in the Operation Manual for more details.

m DLNK(226): CPU Bus Unit I/O Refresh (CS1-H, CJ1-H, CJ1M, or CS1D CPU
Units Only)

DLNK(226) is used to refresh data for a CPU Bus Unit of a specified unit num-
ber. The following data is refreshed.

» Words allocated to the Unit in the CIO Area
» Words allocated to the Unit in the DM Area
» Data specific to the Unit (See note.)

Note Data specific to a CPU Bus Unit would include data links for Control-
ler Link Unit or SYSMAC LINK Units, as well as remote I/O for De-
viceNet Units.

DLNK N: Unit number of CPU Bus Unit
N

Example:

The instruction on the left would refresh the words
DLNK allocated to the Unit in the CIO Area and DM Area, and
“ data specific to the CPU Bus Unit with unit number 1.

Application Example: With a long cycle time, the refresh interval for Controller
Link data links can be very long. This interval can be shortened by executing
DLNK(226) for the Controller Link Unit to increase the frequency of data link
refreshing.

6-1-7 Disabling Special I/0 Unit Cyclic Refreshing

Ten words in the Special I/O Unit Area (CIO 2000 to CIO 2959) are allocated
to each Special I/0 Unit based on the unit number set on the front of the Unit.
Data is refreshed between this area and the CPU Unit each cycle during I/O

241



CycleTi me/Hig_;h-speed Processi ng Section 6-1

6-1-8

242

refreshing, but this cyclic refreshing can be disabled for individual Units in the
PLC Setup.

There are basically three reasons to disable cyclic refreshing:

1,2,3... 1. Cyclic refreshing for Special I/0O Units can be disabled when the cycle time
is too long because so many Special I/O Units are installed.

2. Ifthe l/O refreshing time is too short, the Unit’s internal processing may not
be able to keep pace, the Special I/O Unit Error Flag (A40206) will be
turned ON, and the Special /0O Unit will not operate properly.

In this case, the cycle time can be extended by setting a minimum cycle
time in the PLC Setup or cyclic I/O refreshing with the Special I/O Unit can
be disabled.

3. Always disable cyclic refreshing for a Special I/O Unit when it will be re-
freshed in an interrupt task by IORF(097). An interrupt task error will occur
and the Interrupt Task Error Flag (A40213) will be turned ON if cyclic re-
freshing and IORF(097) refreshing are performed simultaneously for the
same Unit.

When cyclic refreshing has been disabled, the Special I1/O Unit's data can be
refreshed during program execution with IORF(097).
PLC Setup

The Cyclic Refreshing Disable Bits for Special I/O Units 0 to 95 correspond
directly to the 96 bits in addresses 226 through 231.

Address Name Setting Default
226 bit 0 Cyclic Refreshing Disable Bit | 0: Enabled 0 (Enabled)
for Special I/O Unit 0 1: Disabled
231 bit 15 Cyclic Refreshing Disable Bit | 0: Enabled 0 (Enabled)
for Special I/O Unit 95 1: Disabled

Improving Refresh Response for CPU Bus Unit Data

This function is supported only by CS1-H, CJ1-H, CJ1M, or CS1D CPU Units.

Normally, data links and other special data for CPU Bus Units are refreshed
along with the CIO and DM Area words allocated to the Units during the 1/O
refresh period following program execution.

The following table lists some example of special data for CPU Bus Units.

Units Special data
Controller Link Units and Controller Link and SYSMAC LINK data links (includ-
SYSMAC LINK Units ing automatically and user-set links)
CS/CJ-series DeviceNet DeviceNet remote 1/0O communications (including
Units fixed allocations and user-set allocations)

The following functions can be used to improve the refresh response for spe-
cial CPU Bus Unit data with CS1-H, CJ1-H, CJ1M, or CS1D CPU Units.

» Reducing the cycle time by using parallel processing mode or high-speed
instructions (Parallel processing mode is not supported by CJ1IM CPU
Units.)

» Executing DLNK(226) to refresh specific CPU Bus Units by specifying
their unit numbers (DLNK(226) can be used more than once in the pro-
gram.)



Cycle Time/H ig_]h-speed Processi ng Section 6-1

Note 1. Longer cycle times (e.g., 100 ms) will increase the interval between when
data links are refreshed. DLNK(226) can be used in this case, as shown in
the following example.

Cyclic task n 1

% »7 DLNK || <gel— Data links (Controller Link or

N SYSMAC Link) are refreshed here for
the CPU Bus Unit with unit number N.
(See note.)

| | DLNK || 4@—— Data links (Controller Link or

M SYSMAC Link) are refreshed here for
the CPU Bus Unit with unit number M.
(See note.)
0~
END [~

1/0 refresh ~g———— Data links are all refreshed here for
Controller Link and SYSMAC Link.

Peripheral
servicing

I

Note If DLNK(226) is executed for a CPU Bus Unit that is busy refreshing
data, data will not be refreshed and the Equals Flag will turn OFF.
Normally, the Equals Flag should be programmed as shown below to
be sure that refreshing has been completed normally.

Execution condition

| | OINK Refreshes data for the CPU
[ Bus Unit with unit number 0.

= Flag Bit “a”

Turns ON bit “a” if data
—/l/l/—Q refreshing fails, enabling the

problem to be detected.

2. IORF(097) is used to refresh data for Basic I/O Units and Special I/O Units.
DLNK(226) is used to refresh CPU Bus Units (CIO and DM Area words al-
located to the Units and special data for the Units).

243



Cycle Time/Hi g_;h—speed Processi ng

Section 6-1

6-1-9 Maximum Data Link I1/O Response Time

The following diagram illustrates the data flow that will produce the maximum
data link I/O response time when DLNK(226) is not used.

Normal Processing

Input

Input Unit

L Input ON delay

—

A

(1) Delay of two cycle times

Basic I/O Units
refreshed.

CPU Bus Units refreshed
(including data links)

One cycle time

e oyl Ime

Program
execution
v

Processing in
CPU Unit #1

Data transfer to

Controller Link Unit

— (2) Delay of two communications cycle times

(2 v
i 1 Data link transmissions

Processing in
CPU Unit #2

Maximum data link 1/O response time

| | __(3) Delay of two cycle times
One com- i o .!vé Data received from Controller Link Unit

munica-

b ! N
tions cycle [ One cycle time

Program

execution

\v

Output Unit

Output ON delay —|

244

There are three points shown in the diagram above where processing is
delayed, increasing the data link I/O response time.

1,2,3... 1.

The input arrives in the PLC (CPU Unit #1) just after I/O refreshing, caus-
ing a delay of one cycle before the input is read into the PLC. CPU Bus
Units are refreshed after program execution, causing a total delay of two
cycle times.

Data exchange occurs just after the PLC passes the token that makes it
the polling node, causing a delay of up to one communications cycle time
before the data is transferred in data link processing. There will also be a
delay of up to one communications cycle time after receiving the token,
causing a total delay of up to two communications cycle times.

The data transferred in data link processing arrives at the PLC (CPU Unit
#2) after data exchange, so the data will not be read into the PLC until the
next data exchange, causing a delay of up to one cycle. CPU Bus Units
are refreshed after program execution, causing a total delay of two cycle
times.

The equation for maximum data link 1/0O response time is as follows:

Input ON delay 1.5ms

Cycle time of PLC at CPU Unit #1 x 2 25ms x 2
Communications cycle time x 2 10 ms x 2
Cycle time of PLC at CPU Unit #2 x 2 20ms x 2




Cycle Time/H ig_]h-speed Processi ng

Section 6-1

Input

Using DLNK(226)

Output ON delay

15ms

Total (data link 1/O response time)

126.5ms

The following diagram illustrates the data flow that will produce the maximum
data link I/O response time when DLNK(226) is used.

Input Unit

Vann Input ON delay

a

A

DLNK(226) execution
v

|:| Basic I/O Units refreshed.

CPU Bus Units refreshed

1) Delay of 1.5 cycle times (including data links)

-
One cycle time

Program

v

T
exegulion DLNK
y

Processing in

DLNK !
CPU Unit #1

v

Data transfer to
Controller Link Unit

—— (2) Delay of two communications cycle times

| l ! ! Data link transmissions

Processing in

<——>L—>‘ One cycle time max
One com- 3) Delay of approx one cycle time
et f 3) y of app Y
tions cycle
__— Data re(%ived from Controller Link Unit
A

Program

" DLNK i
CPU Unit #2 . exe@tlon I DLi\lK DLVNK
Output Unit ‘

Maximum data link 1/O response time

v

Output ON delay _

The

re are three points shown in the diagram above where processing is

delayed, increasing the data link I/O response time.

Note In this example, it is assumed that DNLK(226) is placed after other instruc-
tions in the program in both CPU Units

1,23..

1.

The input arrives in the PLC (CPU Unit #1) just after I/O refreshing, caus-
ing a delay of one cycle before the input is read into the PLC. CPU Bus
Units are refreshed during program execution, reducing the total delay to
approximately 1.5 cycle times.

Data exchange occurs just after the PLC passes the token that makes it
the polling node, causing a delay of up to one communications cycle time
before the data is transferred in data link processing. There will also be a
delay of up to one communications cycle time after receiving the token,
causing a total delay of up to two communications cycle times.

The data transferred in data link processing arrives at the PLC (CPU Unit
#2) after the 1/O refresh, but DLNK(226) refreshes the data, so the data will
be read into the PLC without causing a delay of up to one cycle. The Basic
I/O Units are refreshed after program execution, causing a total delay of
approximately one cycle time.

245



CycleTi me/Hig_;h-speed Processi ng Section 6-1

The equation for maximum data link 1/0O response time is as follows:

Input ON delay 15ms
Cycle time of PLC at CPU Unit#1 x 1.5 |25 ms x 1.5 Faster by 12.5 ms
(25 ms x 0.5)
Communications cycle time x 2 10 ms x 2
Cycle time of PLC at CPU Unit #2 x 1 20ms x 1 Faster by 20 ms
(20 ms x 1)
Output ON delay 15 ms
Total (data link 1/0O response time) 94 ms Faster by 32.5 ms (26%
faster)

6-1-10 Background Execution

Applications

Procedure

246

Note

1,2,3..

Background execution can be used to reduce fluctuations in the cycle time.
Background execution is supported only by CS1-H, CJ1-H, or CJ1M CPU
Units.

Table data processing (such as data searches) and text string processing
(such as text string searches), require time to execute, and can create large
fluctuations in the cycle time due to the extended amount of time required to
execute them.

With the CS1-H, CJ1-H, or CJ1IM CPU Units (See note.), however, back-
ground execution (time slicing) can be used to execute the following instruc-
tions over several cycles to help control fluctuations in the cycle time. The
PLC Setup enables setting background execution for each type of instruction.

The CS1D CPU Units do not support background execution.

* Table data processing instructions
« Text string processing instructions
« Data shift instructions (ASYNCHRONOUS SHIFT REGISTER only)

Setting background execution for the above instructions can help control tem-
porary increases in the cycle time.

_ CS1-H or CJ1-H Backaround
CS1 CPU Unit CPU Unit execﬂ’tioﬁ

e Long execution__, = | eecuton
time only
started. sl | EXecuted over

‘ O 1 ‘ O several cycles
Longer cycle time I using time slicing.
when MAX is
executed.

Background execution can be used for large quantities of data processing,
such as data compilation or processing, that is required only at special times
(e.g., once a day) when reducing the effect on the cycle time is more impor-
tant than the speed of the data processing.

1. Set the PLC Setup to enable background execution for the required in-
structions.

2. Set the communications port number (logical port number) to be used for
background execution in the PLC Setup. This port number will be used for
all instructions processed in the background.

Note One port is used for all background execution. Background execu-
tion for an instruction can thus not be started if background execution



Cycle Time/H ig_]h-speed Processi ng Section 6-1

is already being performed for another instruction. Use the Commu-
nications Port Enabled Flag to control instructions specified for back-
ground execution so that no more than one instruction is executed at
the same time.

3. If aninstruction for which background execution has been specified is ex-
ecuted, execution will only be started in the cycle in which the execution
condition was met and execution will not be completed in the same cycle.

4. When background execution is started, the Communications Port Enabled
Flag for that port will be turned OFF.

5. Background execution will be continued over several cycles.

6. When processing has been completed, the Communications Port Enabled
Flag for that port will be turned ON. This will enable another instruction to

Applicable Instructions

be executed in the background.

m Table Data Processing Instructions

Instruction Mnemonic | Function
code
DATA SEARCH SRCH 181
SWAP BYTES SWAP 637
FIND MAXIMUM MAX 182
FIND MINIMUM MIN 183
SUM SUM 184
FRAME CHECKSUM FCS 180
m Text String Processing Instructions
Instruction Mnemonic | Function
code
MOVE STRING MOV$ 664
CONCATENATE STRING +$ 656
GET STRING LEFT LEFTS 652
GET STRING RIGHT RIGHTS$ 653
GET STRING MIDDLE MID$ 654
FIND IN STRING FIND$ 660
STRING LENGTH LENS 650
REPLACE IN STRING RPLC$ 661
DELETE STRING DEL$ 658
EXCHANGE STRING XCHG$ 665
CLEAR STRING CLR$ 666
INSERT INTO STRING INS$ 657
m Data Shift Instructions
Instruction Mnemonic | Function
code
ASYNCHRONOUS SHIFT REGISTER ASFT 017

Differences between Instructions Executed Normally and in the Background

The differences between normal instruction execution and execution in the

background are listed below.

m Outputting to Index Registers (IR)

If MAX(182) or MIN(183) is executed to output the I/O memory map address
of the word containing the minimum or maximum value to an index register,

247



CycleTi me/Hig_;h-speed Processi ng Section 6-1

248

the address will not be output to the index register and will be output to A595
and A596 instead. To store the address in an index register, use a Data Move
instruction (e.g., MOVL(498)) to copy the address in A595 and A596 to an
index register.

m Conditions Flags

Conditions Flags will not be updated following execution of instructions pro-
cessed in the background. To access the Conditions Flag status, execute an
instruction that affects the Conditions Flags in the same way, as shown in the
following example, and then access the Conditions Flags.

Example:

MOV(021) affects the Equals and Negative Flags in the same way as
MAX(182), i.e., they both turn ON the Equals Flag for 0 and turn ON the Neg-
ative Flag if the MSB is ON. MOV(021) can thus be used to copy the results of
MAX(182) to the same address to manipulate the Conditions Flags so that the
status can be accessed.

Execution condition

_| | MAX Finds the maximum value in the

| D01000 ;
02000 table data starting at D020000

D00000 and places it in DO0000O0.

RSET
000000

SET
000001

000001  A20200

|| — Moves the contents of D0O00000
| 1

D00000 to DO0000O0 to manipulate the
D00000 Conditions Flags.

Wo00000  Turns ON WO0000O if the Equals
I I O Flag is ON, i.e., if DOOO00O
contains 0000 Hex.

m Outputting to Index Register IR00
If SRCH(181) is executed to output the I/O memory map address of the word
containing the matching value (the first word if there is more than one) to an
index register, the address will not be output to the index register and will be
output to A595 and A596 instead.

m Outputting to Data Registers (DR) for SRCH(181)

If SRCH(181) is executed to output the matching data to a data register, the
data will not be output to the data register and will be output to A597 instead.

m Matching Text Strings

If SRCH(181) finds matching data, it will not turn ON the Equals Flag, but will
turn on A59801 instead.

m |nstruction Errors

If an instruction execution error or illegal access error occurs for an instruction
being processed in the background, the ER or AER Flags will not be turned
ON and A39510 will be turned ON instead. A39510 will remain ON until the
next time an instruction is processed in the background.



Cycle Time/H ig_]h-speed Processi ng Section 6-1

m Outputting to Data Registers (DR) for MAX(182) or MIN(183)

If MAX(182) or MIN(183) is executed with a data register specified as the out-
put word for the minimum or maximum value, an instruction execution error
will occur and the ER Flag will turn ON.

PLC Setup
Word | Bits Name Setting Default and
update
timing
198 |15 Table Data Instruc- 0: Not processed in back- 0: Not pro-
tion Background Exe- | ground cessed in
cution 1: Processed in background background
14 | Text String Instruc- | 0: Not processed in back- Start of oper-
tion Background Exe- | ground ation
cution 1: Processed in background
13 Data Shift Instruction |0: Not processed in back-
Background Execu- | ground
tion 1: Processed in background
00 to | Communications Port | 0 to 7 Hex: Communications 0 Hex: Port 0
03 Number for Back- ports 0 to 7 (internal logical Start of oper-
ground Execution ports) ation
Auxiliary Area Flags and Words
Name Address Description
Communica- |A20200 to | Turns ON when a network instruction (SEND, RECV,
tions Port A20207 CMND, or PMCR) can be executed with the correspond-
Enabled Flags ing port number or background execution can be exe-

cuted with the corresponding port number (CS1-H, CJ1-
H, or CJ1M CPU Units only). Bits 00 to 07 correspond
to communications ports 0 to 7

When the simple backup operation is used to performed
a write or compare operation for a Memory Card on a
CS1-H, CJ1-H, or CJ1M CPU Unit, a communications
port will be automatically allocated, and the correspond-
ing flag will be turned ON during the operation and
turned OFF when the operation has been completed.

Communica- |[A21900 to | Turns ON when an error occurred during execution of a

tions Port A21907 network instruction (SEND, RECV, CMND, or PMCR).
Error Flags Bits 00 to 07 correspond to communications ports 0 to
7.

When the simple backup operation is used to performed
a write or compare operation for a Memory Card on a
CS1-H, CJ1-H, or CJ1M CPU Unit, a communications
port will be automatically allocated. The corresponding
flag will be turned ON if an error occurs and will be
turned OFF if the simple backup operation ends nor-

mally.
Communica- |A203to These words contain the completion codes for the cor-
tions Port A210 responding port numbers when network instructions
Completion (SEND, RECV, CMND, or PMCR) have been executed.
Codes The contents will be cleared when background execu-

tion has been completed (for CS1-H, CJ1-H, or CJ1M
CPU Unit only). Words A203 to A210 correspond to
communications ports 0 to 7.

When the simple backup operation is used to performed
a write or compare operation for a Memory Card on a
CS1-H, CJ1-H, or CJ1IM CPU Unit, a communications
port will be automatically allocated, and a completion
code will be stored in the corresponding word.

249



Cycle Time/Hi g_;h—speed Processi ng

Section 6-1
Name Address Description
Background | A39510 Turns ON when an instruction execution error or illegal
Execution ER/ access error occurs in an instruction being executed in
AER Flag the background. Turns OFF when power is turned ON
or operation is started.
Background |A595 and | These words receives the output when the output of an
Execution A596 instruction executed in the background is specified for
IROO Output an index register. No output will be made to IR00.
Range: 0000 0000 to FFFF FFFF Hex
Lower 4 digits: A595, Upper 4 digits: A596
Background | A597 This word receives the output when the output of an
Execution instruction executed in the background is specified for a
DROO Output data register. No output will be made to DROO.
Range: 0000 to FFFF Hex
Background | A59801 This flag is turned ON when matching data is found for
Execution a SRCH(181) executed in the background.
Equals Flag
Output

Note The communications ports (internal logical ports) in the CPU Unit are used

both for background execution and the following instructions

* SEND(090), RECV(098), and CMND(490) (Network Communications
Instructions)

« PMCR(260) (PROTOCOL MACRO)

Background instructions and the above instructions cannot be executed
simultaneously on the same port. Use the Communications Port Enabled
Flags to be sure that only one instruction is executed on each port at any one

time.

Note If an instruction is specified for execution in the background for a port
for which the Communications Port Enabled Flag is OFF, the ER Flag
will turn ON and the background instruction will not be executed.

Communications Port Enabled Flags
The Communications Port Enabled Flags are ON when the port is not being
used and OFF when processing is being performed on the port.

250

Communications Port

Enabled Flag

Background instruction
processing for user

program

1

0 [

Instruction
executed
P

Cycle time Cycletime ' Cycle time

Background execution

D I/O refresh



Cycle Time/High-speed Processi

J

Section 6-1

Programming Example 1

m Traditional Programming without Background Execution
As shown below, processing is completed when the instruction is executed.

Execution condition

4l

a

MAX
D00000
D00100
D00200

SUM

D00002

D00100

D00201

MAX(182) is executed completely as soon
as the execution condition “a” turns ON.

SUM(184) can be executed immediately
after MAX(182).

= Programming with Background Execution

With background execution, the program is changed so that MAX(182) is exe-
cuted only when the specified Communications Port Enabled Flag is ON (i.e.,
only when the port is not already being used for background execution or net-
work communications). Also, input conditions are controlled with SET and
RESET instructions to ensure that processing is performed in the correct
order. (Communications port 0 is used for background execution in the follow-

ing example.)

Communications

Execution  port Enabled Flag

condition
a A20200
4! MAX
I D00000
= D00100
S D00200
",
.,
\\\
\\ —
P
h \\{"//
-
7 \ RSET
/’lll/ ™~ -n
-
L"//
Communications
Execution
condition Port Enabled Flag
A20200
| | ] SUM
I | | D00002
D00100
e D00201
e
.,
R
"~
e RSET
Il T
SET
c
c A20200
Confirmation of

1

completion of
background
execution

MAX(182) execution is started if execution
condition “a” is ON and the Communications
Port Enabled Flag is ON.

Execution condition “b” is turned ON to
enable the next background instructions
(here, SUM(184)).

“a” is turned OFF so that MAX(182) will not
be executed the next cycle.

SUM(184) execution is started if
execution condition “b” is ON and the
Communications Port Enabled Flag is ON
(i.e., when MAX(182) execution has been
completed).

“b” is turned OFF so that SUM(184) will not
be executed the next cycle.

Execution of SUM(184) has been completed
when “c” is ON and the Communications
Port Enabled Flag is ON.

“c” is turned ON to enable confirming the
completion of SUM(184).

251



CycleTi me/Hig_;h-speed Processi ng Section 6-1

Programming Example 2

This examples show background execution when index register output is
specified, as is possible for MAX(182), MIN(183), and SRCH(181).

= Traditional Programming without Background Execution
As shown below, the actual memory map address of the word containing the
maximum value is output to an index register.

Execution condition
a

| MAX MAX(182) is executed completely as

[ 500000 soon as the execution condition “a”
turns ON, and the actual memory map
D00100 address of the word containing the
D00200 maximum value is output to IR0
MOV The contents of the I/O memory word
RO indicated by the memory map
500300 address in IR0 is copied to DO0300.

= Programming with Background Execution

With background execution, the actual memory map address of the word con-
taining the maximum value is output to A595 and A596. MOVL(498) is then
used the actual memory map address to the index register.

. Communications
Execution  port Enabled Flag
condition

a A20200

_| [ ﬁ | MAX MAX(182) execution is started if execution
| I D00000 condition “a” is ON and the Communications
T D00100 Port Enabled Flag is ON. The actual memory

D00200 map address of the word containing the
maximum value is output to A595 and A596.

\4— SET Execution condition “b” is turned ON to
- . [[—b ] execute MOVL(498).

g —— “a” is turned OFF so that MAX(182) will not
P | a | beexecuted the next cycle.

z
Communications
P

Execution port Enabled Flag

condition

b A20200

| ['] wov——] When execution condition “b’
_' [ | 505 is ON and the

IRO Communications Port Extra
Enabled Flag is ON, processing
MOVL(498) copies the actual [ required to
memory map address in move
A595 and A596 to IRO. address.

MOV The contents of the I/O memory word

LIRO indicated by the memory map address in IRO

D00300 is copied to D0O0300.

E——

6-1-11 Sharing Index and Data Registers between Tasks

Sharing Index and Data Registers (IR/DR) between tasks is supported only by
CS1-H, CJ1-H, CJ1M, or CS1D CPU Units. The normal setting is for separate
registers for each task. The current setting can be confirmed in A09914.

Note 1. Shared Index and Data Registers can be used to eliminate the need to
store and load register contents between tasks when the same contents is
needed in two or more tasks. Refer to the section on index registers in the

252



Cycle Time/H ig_]h-speed Processi ng

Section 6-1

Setting Method

Auxiliary Area Flags and Words

1,2,3...

CS Series Operation Manual (W339) or the CJ Series Operation Manual
(W393) for information on storing and loading index register contents.

The switching time between tasks will be somewhat faster when index and

data registers are shared. It is recommended to set shared registers if the
registers are not being used or if there is no particular need for separate

registers in each task.

Use the CX-Programmer to set shared index and data registers. This setting
cannot be made from a Programming Console.

1. Select a PLC (PLC) in the CX-Programmer project tree and click the right

mouse button.

= BEE - GX-Proeramimer —
[ File  Edit Wiew [neert

LS Proeral

indow  Help

DEFH SR [ sBR o asleeas|sn|nlEDRTT |4

Delete

N EEEE T e[S
EEERs a0 E s
== [0 : B
5 HenProject
1 £0 ety Lo
53 Symbols Ghange
g7 0 Table #=2 Insert Program
) sett
MZ":E;;: 2 Work Online
SR gw;‘miralm'l 0 Operating Made N
& o % Monitoring
Automatic Allocation..
[#% Gompile All PLG Programs
Transfer >
\ Project / & Cut
———eeeeee ER ey
ﬂ 2 Caste

’7 Allow Docking
Hide

Float Tn Main Window

Properties

\4| 4 | D|N|\ Copile £ Find Report i Transfer f

[

For Help, press F1

[HewPLE1 - Offline [ T

rune 070, @) - T00%

7

2. Select Properties. The following dialog box will be displayed.

FLC

a| General | Pratection |

Mod

Name:  [NewPLGT
Type:  GSTG-H GPUAT il

[V Use comment instructions
[V Use section markers

¥ Display dialog to show PLC Memary Backup Status

I Use IR/DRs independently per task

) Brosran
| Debue
] [iaritor
) Bun

3. Leave the checkmark for using IR/DR independently per task if separate
index and data registers are required for each task. Remove the check-

mark to use shared index and data registers for all tasks.

Name Address Description
IR/DR Opera- | A09914 Indicates whether or not index and data registers are
tion between shared between tasks.
Tasks 0: Separate registers for each task (default)
1: Shared registers for all tasks

253



I ndex Reg_]isters

Section 6-2

6-2

Index Registers

6-2-1 What Are Index Registers?

Index Registers function as pointers to specify PLC memory addresses,
which are absolute memory addresses in I/O memory. After storing a PLC
memory address in an Index Register with MOVR(560) or MOVRW(561),
input the Index Register as an operand in other instructions to indirectly
address the stored PLC memory address.

The advantage of Index Registers is that they can specify any bit or word in I/
O memory, including timer and counter PVs.

Pointer All areas of

I/O Memory

MOVR(560)

IRO

Index Register

6-2-2 Using Index Registers

254

1,23..

Index Registers can be a powerful tool when combined with loops such as
FOR-NEXT loops. The contents of Index Registers can be incremented, dec-
remented, and offset very easily, so a few instructions in a loop can process
tables of consecutive data very efficiently.

Increment IR0 and repeat
instruction execution
> Table data

Indirect
addressing
IR0

IRO

Basic Operation

Basically, Index Registers are used with the following steps:

1. Use MOVR(560) to store the PLC memory address of the desired bit or
word in an Index Register.

2. Specify the Index Register as the operand in almost any instruction to in-
directly address the desired bit or word.

3. Offset or increment the original PLC memory address (see below) to redi-
rect the pointer to another address.

4. Continue steps 2 and 3 to execute the instruction on any number of ad-
dresses.

Offsetting, Incrementing, and Decrementing Addresses

The following table shows the variations available for indirect addressing.

Variation Syntax
Indirect addressing JRC

Indirect addressing with constant offset | Constant ,IR[]
(Include a + or —in the constant.)




I ndex Registers

Section 6-2

Variation Syntax

Indirect addressing with DR offset DRI, IRC]

Indirect addressing with auto-increment | Increment by 1: ,IRC I+
Increment by 2: , IRCI++

Indirect addressing with auto-decrement | Decrement by 1: —IRL]

Decrement by 2: — —IRL]

Instructions That Directly Address Index Registers
Index registers can be directly addressed by the following instructions.

DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401), DOUBLE
SIGNED BINARY SUBTRACT WITHOUT CARRY: -L(411), DOUBLE
INCREMENT BINARY: ++L(591), and DOUBLE DECREMENT BINARY: — —
L(593)

Example 1

The following example shows how an Index Register in a program loop can
replace a long series of instructions. In this case, instruction A is repeated n+1
times to perform some operation such as reading and comparing a table of
values.

Instruction A m

Stores the PLC memory
4} MOVR(560) m IRO address of min IRO.

+

Instruction A m+1

— Instruction A IR0+

Repeats the process
in a loop such as
FOR-NEXT.

Instruction A m+n

Example 2

The following example uses Index Registers in a FOR—-NEXT loop to define
and start 100 timers (TO000 to T099) with SVs contained in D00100 through
D00109. Each timer’'s timer number and Completion Flag are specified in
Index Registers and the loop is repeated as the Index Registers are incre-
mented by one with each repetition.

MOVRW(561) stores the PLC memory address of T0O000's PV in IRO.
MOVR(560) stores the PLC memory address of TO000's Completion Flag in
IR1.

MOVR(560) stores the PLC memory address of W00000 is stored in IR2.

d

v

TIM starts the timer with the timer number (timer PV) indirectly
addressed by IRO+.

If the timer's Completion Flag (indirectly addressed by IR1+) is
ON, the work bit indirectly addressed by IR2+ is turned ON.
The IR0+, IR1+, and IR2+ variations increment the address in
the Index Register after referencing the address.

The ++ instruction increments DO00OO.

Repeated

255



I ndex Reg_;isters Section 6-2

The 1l-instruction subroutine on the left is equivalent to the 200-instruction
subroutine on the right.

256

The FOR-NEXT loop starts timers TO000 through TO099 by repeating
the loop 100 times while incrementing the contents of IR0 (timer number/
PV address), IR1 (Completion Flag address), IR2 (Work bit address),
and D0O000O (SV address).

W000
00
| W TIM
— | MOVRW | Puts the PLC memory 0000
10000 address of TO000's
PV in IRO. D00100
IR0
T0000
MO__ VR | Putsthe PLC memory I woso
T0000 address of TO000's
- Completion Flag in IR1.
W000
01
MO VR | Putsthe PLC memory W TIM
WO00000 address of W00000
in IR2. 0001
IR2 D00101
MO %
. . T0001
&100 Writes &100 in DO000O. : : WO000
D00000 01
IMP Jumps the FOR-NEXT '
loop if the pointers above !
&1 haven't been set. !
W006
03
+ TIM
0099
D00109
FOR Repeats the FOR-NEXT
2100 loop 100 times. T0099
JR2 ) i 11 WO006
|y If the Work bit addressed in H 03
g m IR2 is OFF, TIM starts the tim-
IR o+ er with the timer PV ad
dressed in IR0+ and the SV
@D00000 addressed in DO00OO.
r JIR1+ If the Completion Flag addressed in
I JR2+ IR1 is ON, OUT turns ON the Work
bit addressed in IR2.
ON
: ++ Increments the content of DO000O.
D00000 (The next address containing an SV.)
{ NEXT |
IME
&l



I ndex Registers

Section 6-2

Direct Addressing of Index Registers
Index Registers can be directly addressed only in the instructions shown in

the following table.

Instruction group Instruction name Mnemonic Primary function
Data Movement Instruc- | MOVE TO REGISTER MOVR(560) Stores the PLC memory address
tions MOVE TIMER/COUNTER PV TO REG- |MOVRW(561) | °f @ bit orword in an Index Regis-
ter.
ISTER
Table Data Processing SET RECORD LOCATION SETR(635)
Instructions GET RECORD NUMBER GETR(636) | Outputs the PLC memory address
stored in an Index Register.
Data Movement Instruc- | DOUBLE MOVE MOVL(498) Transfers between Index Regis-
tions DOUBLE DATA EXCHANGE XCGL(562) te;ﬁsgr?:d for eXChangeS and com-
Comparison Instructions | DOUBLE EQUAL =L(301) P '
DOUBLE NOT EQUAL <> (306)
DOUBLE LESS THAN <L(311)
DOUBLE LESS THAN OR EQUAL <=L(316)
DOUBLE GREATER THAN >L(321)
DOUBLE GREATER THAN OR EQUAL |>=L(326)
DOUBLE COMPARE CMPL(060)
Increment/Decrement DOUBLE INCREMENT BINARY ++L(591) Changes the PLC memory
Instructions DOUBLE DECREMENT BINARY — _1(593) fiddress in the Index Regllster by
- incrementing, decrementing, or
Symbol Math Instructions | DOUBLE SIGNED BINARY ADD WITH- |+L(401) offsetting its content.
OUT CARRY
DOUBLE SIGNED BINARY SUBTRACT |-L(411)
WITHOUT CARRY
Special Instructions CONVERT ADDRESS FROM CV FRMCV(284) | Convert actual PLC memory
CONVERT ADDRESS TO CV TOCV(285) addresses between CV-series and
CS/CJ-series addresses.
(CS1-H, CJ1-H, or CJIM CPU
Units only)

Note Instructions for double-length
used for index registers IR0
words.

operands (i.e., those with “L” at the end) are
to IR15 because each register contains two

6-2-3 Processing Related to Index Registers

The CS/CJ-series CPU Unit's Table Data Processing instructions complement
the functions of the Index Registers. These instructions can be broadly
divided into the stack-processing and table-processing instructions

Processing

Purpose

Instructions

Stack processing

Operate FIFO (first-in first-out) or
LIFO (last-in first-out) data tables,
and read, write, insert, delete, or
count data entries in data tables.

SSET(630), PUSH(632), FIFO(633),
LIFO(634) and, for CS1-H, CJ1-H, or
CJ1M CPU Units only, SREAD(639),
SWRITE(640), SINS(641), SDEL(642),
SNUM(638)

257



I ndex Reg_]isters

Processing

Table

ing

process-

word records

tions)

Tables with one-

(Range instruc-

Section 6-2
Purpose Instructions
Basic pro- | Find values such as the checksum, a | FCS(180), SRCH(181), MAX(182),
cessing particular value, the maximum value, | MIN(183), and SUM(184)
or minimum value in the range.
Special Perform various other table process- | Combine Index Registers with instruc-
processing | ing such as comparisons or sorting. |tions such as SRCH(181), MAX(182),
MIN(183), and comparison instruc-
tions.

records

Tables with multiple-word

(Record-table instructions)

Process data in records that are sev-
eral words long.

Combine Index Registers with instruc-
tions such as DIM(631), SETR(635),
GETR(636), and comparison instruc-
tions.

Stack Processing

258

E Pointer address

Stack
region

(The above diagram shows
the status of the pointer
data before data is added.)

Note

Stack instructions act on specially defined data tables called stacks. Data can
be drawn from a stack on a first-in first-out (FIFO) or last-in first-out (LIFO)
basis.

A particular region of I/O memory must be defined as a stack. The first words
of the stack indicate the length of the stack and contain the stack pointer. The
stack pointer is incremented each time that data is written to the stack to indi-
cate the next address where data should be stored.

E Pointe/g?jdress [Pointeg ac{dress POinte;adfress
= S NN

Actually, the first two words of the stack contain the PLC memory address of
the last word in the stack and the next word contains the stack pointer.

FIFO (First-in First-out) Processing
The following diagram shows the operation of a first-in first-out (FIFO) stack.

Pointer address
A A ]

—

Reads the oldest word of data stored
in the stack. Each time that a word is
read, the pointer is decremented by one
to indicate the next address for storage.




I ndex Registers Section 6-2

LIFO (Last-in First-out) Processing
The following diagram shows the operation of a last-in first-out (LIFO) stack.

[ |Pointer address
A Reads most recent word of data stored
B in the stack. Each time that a word is
read, the pointer is decremented by one
to indicate the next address for storage.

% X Data at the position that was read

remains unchanged.

¥
x|S|<|

Manipulating Specific Table Data

Individual entries in a table can be read, writing, inserted, or deleted. The fol-
lowing diagram shows an example for reading.

Pointer address
A . .
B Data is read from a specific offset from
Rea " the point address in the table.
\> Manipulating specific table data can be
4 used, for example, in tracing items on a
-n W conveyor.
X
N,

An offset from the point
address is specified.

Counting Table Data
The following diagram shows how data can be counted in a data table.

Pointer address The number of entries in the data table
> ) are counted from just before the pointer
A Counts all entries  address to the beginning of the table.
B from one before the

This can be used, for example, to count
the number of items on a conveyor.

pointer address.

V l
W
X

| N |

Stack Instructions

The following table lists the stack instructions and their functions. Typical
applications for stacks would be processing shelf information for automatic
warehousing systems, processing test results, and managing information on
workpieces on a conveyor.

Instruction Function

SSET(630) Defines a stack region.

PUSH(632) Stores data in the next available word in the stack.

FIFO(633) Reads data from the stack on a first-in first-out basis.

LIFO(634) Reads data from the stack on a last-in first-out basis.

SREAD(639) |Read a specific entry from the table (CS1-H, CJ1-H, or CJ1M CPU
Units only).

SWRITE(640) | Writes a specific entry to the table (CS1-H, CJ1-H, or CJ1M CPU
Units only).

SINS(641) Inserts a specific entry in the table (CS1-H, CJ1-H, or CJ1M CPU
Units only).

SDEL(642) Deletes a specific entry from the table (CS1-H, CJ1-H, or CJ1M CPU
Units only).

SNUM(638) | Counts the number of entries in the table (CS1-H, CJ1-H, or CJ1M
CPU Units only).

259



I ndex Reg_]isters

Section 6-2

260

T

Range speci-

fied in the
instruction

Table Processing (Range Instructions)

The range instructions act on a range of words, which can be considered a
table of one-word records. These instructions perform basic operations such
as finding the maximum value or minimum value in the range, search for a
particular value in the range, or calculating the sum or FCS.

The PLC memory address of the result word (word containing the max. value,
min. value, search data, etc.) is automatically stored in IRO. The Index Regis-
ter (IR0O) can be used as an operand in later instructions such as MOV(021) to
read the contents of the word or perform other processing.

Data
. N
~--- Max. value
« Min. value

SUM calculation
~ Search }

FCS calculation

Note

The following table lists the range instructions and their functions.

Instruction Function Description

SRCH(181) |Finds search data. Finds the search data in the specified range
and outputs the PLC memory address of the
word containing that value to IRO.

MAX(182) Finds max. value. Finds the maximum value in the specified
range and outputs the PLC memory address
of the word containing that value to IRO.

MIN(183) Finds min. value. Finds the minimum value in the specified
range and outputs the PLC memory address
of the word containing that value to IRO.

SUM(184) | Calculates sum. Calculates the sum of the data in the specified
range.

FCS(180) Calculates checksum. | Calculates the frame checksum of the data in
the specified range.

The Index Registers can be combined with other instructions (such as com-
parison instructions) in FOR—NEXT loops to perform more complicated opera-
tions on ranges of words.

Table Processing (Record-table Instructions)

The record-table instructions act on specially defined data tables made up of
equal-length records. The records can be accessed by record number for
easy processing.

Instruction Function Description

DIM(631) Defines a record table. | Declares the length of each record and the
number of records.

SETR(635) | Sets record location. | Writes the location of the specified record (the
PLC memory address of the beginning of the
record) in the specified Index Register.

GETR(636) | Gets record location. | Returns the record number of the record that

contains the PLC memory address in the
specified Index Register.

Record numbers and word addresses are related through the Index Regis-
ters. Specify a record number in SETR(635) to store the PLC memory
address of the beginning of that record in an Index Register. When data is
required from the record, add the required offset to that Index Register to
access any word in the record.

Use the record-table instructions with Index Registers to perform the following
kinds of operations: reading/writing record data, searching records, sorting



I ndex Registers

Section 6-2

1,23..

record data, comparing record data, and performing calculations with record
data.

A typical application of record tables is storing manufacturing data for different
models of a product (such as temperature and pressure settings) in record
form and switching from model to model just by changing the record number.

Model A
Record table ! Model A
No. 2 Record 2
Record 1 ! Temperature setting
Pressure setting
Record 2
Record N

Basically, record tables are used with the following steps:

1. Define the structure of the record table with DIM(631) and set the PLC
memory address of a record in an Index Register with SETR(635).

2. Offset or increment the PLC memory address in the Index Register to read
or compare words in the record.

3. Offset or increment the PLC memory address in the Index Register to
switch to another record.

4. Repeat steps 2 and 3 as required.

Example

The following example uses Index Registers and the record-table instructions
to compare three values to words 1, 3, and 5 in each record. If a match is
found, the record number is stored in DO00OO.

DIM(631) defines a record table with 1,000 records of 5 words
each.

SETR(635) stores the PC memory address of the first record in
IRO.

 The first, third, and fifth words in the record are compared to three
different values.

« |f all three words match their respective values, the record number
is stored in DO0000 by GETR(636) and the loop is broken.

« |f all three words do not match their respective values, 5 is added
to IR0 and the loop continues.

261



I ndex Reg_;isters

Section 6-2

262

0000
01
1L
11 DIM
L Defines record table 1 with 1,000 records of
&5 5 words each.
&1000
E0_00000
SETR Stores the PLC memory address of table
1 number 1's first record (record 0) in IRO.
&0
IRO
JMP Jumps past the FOR-NEXT loop if the pro-
21000 cessing conditions haven't been set.
FOR Controls the FOR-NEXT loop for a maximum
81000 of 1,000 repetitions (1,000 records).
= = GETR
,IRO +2,IR0 +4,IR0 &l
#1234 #ABCD #9999 IR0
D00000
Compares the contents of word 1 to #1234,
word 3 to #ABCD, and word 5 to #9999.
If words 1, 3, and 5 contain the comparison
data, the record number is stored in DOO000
and BREAK interrupts the loop.
ON
1L
I L Adds 5 to the PLC memory address in IRO to
IRO move to the beginning of the next record.
&5
IRO
Returns execution to FOR to continue the loop.
IME Jump destination if the processing conditions
&1000 haven't been set.

Increments IR0 by five with each repetition and compares the first, third,
and fifth words in each record to the comparison data. Writes the record
number to DO0000 and breaks the loop if matching data is found.



Serial Communications

Section 6-3

6-3 Serial Communications

The CS/CJ-series CPU Units support the following serial communications
functions. Host link communications and no-protocol communications are
described in detail later in this section.

Protocol

Connections

Description

Ports

Peripheral

RS-232C

Host link

Host computer

OMRON PT
(Programmable
Terminal)

or

.

1) Various control commands such
as reading and writing /O mem-
ory, changing the operating
mode, and force-setting/reset-
ting bits can be executed by
issuing host link commands or
FINS commands from the host
computer to the CPU Unit.

2) Itis also possible to issue FINS
commands from the CPU Unit
to the host computer to send
data or information.

Use host link communications to
monitor data such as operating
status, error information, and qual-
ity data in the PLC or send data
such as production planning infor-
mation to the PLC.

OK

OK

No-protocol

Standard external device

—

Communicate with standard
devices connected to the RS-232C
port without a command-response
format. Instead the TXD(236) and
RXD(235) instructions are exe-
cuted from the program to transmit
data from the transmission port or
read data in the reception port.
The frame headers and end codes
can be specified.

Not allowed

OK

NT link
1:Norl:1l

OMRON PTs
(Programmable

}

Terminals)

[

Data can be exchanged with PTs
without using a communications
program in the CPU Unit.

OK

OK

263




Serial Communications

Section 6-3

Protocol

Connections

Description

Ports

Peripheral

RS-232C

Peripheral
bus

Programming Devices

(Not Programming Consoles)

I

Provides high-speed communica-
tions with Programming Devices
other than Programming Con-
soles.

(Remote programming through
modems is not supported.)

OK

OK

Serial PLC
Links (CJ1M
only)

CJIM CPU Unit
Polling Unit

7

CJIW-CIF11

RS-422A/485

connected to
RS-232C port
(See note.)

u

|4

i For NS-series PT:

:/ NS-AL002

[

CJ1M CPU Unit
Polled Unit

CJ1IM CPU Unit
Polled Unit

CJ1IM CPU Unit
Polling Unit

RS-232C

CJ1IM CPU Unit
Polled Unit

8 Units max.

Up to ten words per Unit can be
shared by up to nine CPU Units,
including one Polling Unit and
eight Polled Units.

An RS-422A Converter can be
connected to the RS-232C port on
each CPU Unit to communicate
via RS-422A/485, or two CPU
Units can communicate via an RS-
232C connection.

The Serial PLC Links can also
include PTs as Polled Units via NT
Links (1:N) combined with CJ1M
CPU Units.

Not allowed

OK

264

Here, we will describe Host Link and No-protocol communications.

Note The CJ1W-CIF11 is not insulated and the total transmission distance is 50
meters max. If the total transmission distance is greater than 50 meters, use
the insulated NT-ALOO1 and do not use the CJ1W-CIF11. If only the NT-
ALOOL1 is used, the total transmission distance can is 500 meters max.




Serial Communications

Section 6-3

6-3-1

Host Link Communications

The following table shows the host link communication functions available in
CS/CJ PLCs. Select the method that best suits your application.

Command flow

Command type

Communications method

Configuration

Host computer

PLC

]
=

!

Host link command

| Host link command

Create frame in the host com-
puter and issue command to the
PLC. Receive the response from
the PLC.

Application:

Use this method when communi-
cating primarily from the host
computer to the PLC.

Directly connect the host computer in a 1:1

or 1:N system.

|

OR

| !

FINS command?
(with host link header
and terminator)

[ | ens | ]
| |

Header  Terminator

Create frame in the host com-
puter and issue command to the
PLC. Receive the response from
the PLC.

Application:

Use these methods when com-
municating primarily from the
host computer to PLCs in the
network.

Directly connect the host computer ina 1:1

or 1:N system.
| [ |

OR

| !

Communicate with other PLCs in the
network from the host computer. (Convert
from host link to network protocol.)

PLC

Host computer

FINS command?
(with host link header
and terminator)

Issue frame with the CPU Unit's
SEND/RECV/CMND instruc-
tions. Receive response from the
host computer.

Directly connect the host computer in a 1:1
system.

]

SEND/RECV/
CMND

| | FINS | | Application:
| | Use this method when communi-
l Header Terminator |cating primarily from the PLC to y /
the host computer to transmit |_- al L]
D status information such as error
information.
Communicate with the host computer
through other PLCs in the network. (Convert
from host link to network protocol.)
SEND/RECV/
CMND
Command /\
Note 1. The FINS command must have a host link header and terminator attached

before it is transmitted from the host computer.

265



Serial Communications

Section 6-3

2. The FINS command is transmitted from the PLC with a host link header
and terminator attached. A program must be prepared in the host comput-
er to analyze the FINS commands and return the proper responses.

Procedure

Set the PLC Setup from a Pro-
gramming Device.

(Settings such as the communica-
tions mode and parameters.)

Programming Console

Peripheral port: Addresses 144, 145, and 147
RS-232C port: Addresses 160 to 163

Be sure to set the communications mode to host link.

Power OFF

(Refer to CX-Programmer User Manual for CX-Programmer procedures.)

Connect the host computer and
CPU Unit.

v

Set the DIP switch on the front of
the CPU Unit.

Turn pin 4 ON when using the peripheral port.
Turn pin 5 OFF when using the RS-232C port.

v

Power ON

| Host computer to PLC ‘

v
v v

PLC to Host computer

y

Issue host link Issue FINS
commands from commands from
the host computer. the host computer.

Host Link Commands

Execute SEND/RECV/CMND
instructions in the PLC's program.

v

Receive responses in the host
computer. (A program is required in
the host computer.)

The following table lists the host link commands. Refer to the C-series Host

Link Units System Manual (W143) for more details.

Header Name Function
code
RR CIO AREA READ Reads the contents of the specified number of CIO Area words, starting

from the specified word.

RL LINK AREA READ Reads the contents of the specified number of Link Area words, start-
ing from the specified word.

RH HR AREA READ Reads the contents of the specified number of Holding Area words,
starting from the specified word.

RC PV READ Reads the contents of the specified number of timer/counter PVs
(present values), starting from the specified timer/counter.

RG T/C STATUS READ Reads the status of the Completion Flags of the specified number of
timers/counters, starting from the specified timer/counter.

RD DM AREA READ Reads the contents of the specified number of DM Area words, starting
from the specified word.

RJ AR AREA READ Reads the contents of the specified number of Auxiliary Area words,

starting from the specified word.

266



Serial Communications Section 6-3
Header Name Function
code

RE EM AREA READ Reads the contents of the specified number of EM Area words, starting
from the specified word.

WR CIO AREA WRITE Writes the specified data (word units only) to the CIO Area, starting
from the specified word.

WL LINK AREA WRITE Writes the specified data (word units only) to the Link Area, starting
from the specified word.

WH HR AREA WRITE Writes the specified data (word units only) to the Holding Area, starting
from the specified word.

wcC PV WRITE Writes the PVs (present values) of the specified number of timers/
counters, starting from the specified timer/counter.

WD DM AREA WRITE Writes the specified data (word units only) to the DM Area, starting
from the specified word.

wWJ AR AREA WRITE Writes the specified data (word units only) to the Auxiliary Area, starting
from the specified word.

WE EM AREA WRITE Writes the specified data (word units only) to the EM Area, starting from
the specified word.

R# SV READ 1 Reads the 4-digit BCD constant or word address in the SV of the spec-
ified timer/counter instruction.

R$ SV READ 2 Searches for the specified timer/counter instruction beginning at the
specified program address and reads the 4-digit constant or word
address in the SV.

R% SV READ 3 Searches for the specified timer/counter instruction beginning at the
specified program address and reads the 4-digit BCD constant or word
address in the SV.

W SV CHANGE 1 Changes the 4-digit BCD constant or word address in the SV of the
specified timer/counter instruction.

ws SV CHANGE 2 Searches for the specified timer/counter instruction beginning at the
specified program address and changes the 4-digit constant or word
address in the SV.

W% SV CHANGE 3 Searches for the specified timer/counter instruction beginning at the
specified program address and changes the 4-digit constant or word
address in the SV.

MS STATUS READ Reads the operating status of the CPU Unit (operating mode, force-set/
reset status, fatal error status).

SC STATUS CHANGE Changes the CPU Unit's operating mode.

MF ERROR READ Reads and clears errors in the CPU Unit (non-fatal and fatal).

KS FORCE SET Force-sets the specified bit.

KR FORCE RESET Force-resets the specified bit.

FK MULTIPLE FORCE SET/RESET Force-sets, force-resets, or clears the forced status of the specified bits.

KC FORCE SET/RESET CANCEL Cancels the forced status of all force-set and force-reset bits.

MM PLC MODEL READ Reads the model type of the PLC.

TS TEST Returns, unaltered, one block of data transmitted from the host com-
puter.

RP PROGRAM READ Reads the contents of the CPU Unit’s user program area in machine
language (object code).

WP PROGRAM WRITE Writes the machine language (object code) program transmitted from
the host computer into the CPU Unit's user program area.

Ml I/O TABLE GENERATE Creates a registered I/O table with the actual I/O table.

QQMR COMPOUND COMMAND Registers the desired bits and words in a table.

QQIR COMPOUND READ Reads the registered words and bits from I/O memory.

Xz ABORT (command only) Aborts the host link command that is currently being processed.

267




Serial Communications Section 6-3
Header Name Function
code
XX INITIALIZE (command only) Initializes the transmission control procedure of all PLCs connected to
the host computer.
IC Undefined command This response is returned if the header code of a command was not
(response only) recognized.

FINS Commands

The following table lists the FINS commands. Refer to the FINS Commands
Reference Manual (W227) for more details.

Type Command Name Function
code
I/O Memory 01 01 MEMORY AREA READ Reads consecutive data from the I/O memory area.
Area Access (o1 [02 |MEMORY AREA WRITE Writes consecutive data to the /O memory area.
01 03 MEMORY AREA FILL Fills the specified range of I/O memory with the same
data.
01 04 MULTIPLE MEMORY AREA Reads non-consecutive data from the I/O memory area.
READ
01 05 MEMORY AREA TRANSFER Copies and transfers consecutive data from one part of
the 1/0 memory area to another.
Parameter 02 01 PARAMETER AREA READ Reads consecutive data from the parameter area.
Area Access [0y |02 |PARAMETER AREA WRITE Writes consecutive data to the parameter area.
02 03 PARAMETER AREA FILL Fills the specified range of the parameter area with the
same data.
Program Area |03 06 PROGRAM AREA READ Reads data from the user program area.
Access 03 |07 |PROGRAM AREA WRITE Writes data to the user program area.
03 08 PROGRAM AREA CLEAR Clears the specified range of the user program area.
Execution 04 01 RUN Switches the CPU Unit to RUN, MONITOR, or DEBUG
Control mode.
04 02 STOP Switches the CPU Unit to PROGRAM mode.
Configuration |05 01 CONTROLLER DATA READ Reads CPU Unit information.
Read 05 |02 |CONNECTION DATA READ Reads the model numbers of the specified Units.
Status Read |06 01 CONTROLLER STATUS READ | Reads the CPU Unit's status information.
06 20 CYCLE TIME READ Reads the average, maximum, and minimum cycle
times.
Clock Access |07 01 CLOCK READ Reads the clock.
07 02 CLOCK WRITE Sets the clock.
Message 09 20 MESSAGE READ/CLEAR Reads/clears messages and FAL(S) messages.
Access
Access Right |0C |01 ACCESS RIGHT ACQUIRE Acquires the access right if no other device holds it.
oC |02 ACCESS RIGHT FORCED Acquires the access right even if another device cur-
ACQUIRE rently holds it.
oC |03 ACCESS RIGHT RELEASE Releases the access right regardless of what device
holds it.
Error Access |21 01 ERROR CLEAR Clears errors and error messages.
21 02 ERROR LOG READ Reads the error log.
21 03 ERROR LOG CLEAR Clears the error log pointer to zero.

268




Serial Communications Section 6-3

Type Command Name Function
code
File Memory |22 01 FILE NAME READ Reads the file memory’s file information.
22 02 SINGLE FILE READ Reads the specified amount of data from the specified
point in a file.
22 03 SINGLE FILE WRITE Writes the specified amount of data from the specified
point in a file.
22 04 FILE MEMORY FORMAT Formats file memory.
22 05 FILE DELETE Deletes the specified files from file memory.
22 07 FILE COPY Copies a file within file memory or between two file
memory devices in a system.
22 08 FILE NAME CHANGE Changes a file name.
22 0A /O MEMORY AREA FILE Transfers or compares data between the 1/0 memory
TRANSFER area and file memory.
22 0B PARAMETER AREA FILE Transfers or compares data between the parameter area
TRANSFER and file memory.
22 oC PROGRAM AREA FILE TRANS- | Transfers or compares data between the program area
FER and file memory.
22 15 CREATE/DELETE DIRECTORY | Creates or deletes a directory.
Forced Status |23 01 FORCED SET/RESET Force-sets, force-resets, or clears the forced status of
the specified bits.
23 02 FORCED SET/RESET CANCEL | Cancels the forced status of all force-set and force-reset
bits.

Message Communications Functions

The FINS commands listed in the table above can also be transmitted through
the network from other PLCs to the CPU Unit. Observe the following points
when transmitting FINS commands through the network.
» CPU Bus Units (such as Controller Link Units or Ethernet Units) must be
mounted in the local PLC and destination PLC to transmit FINS com-
mands.

* FINS commands are issued with CMND(490) from the CPU Unit's pro-
gram.

* FINS commands can be transmitted over three networks at most. The
networks can be the same type or different types.
I—! F CMND

Serial Communications Unit Serial Communications Unit

Refer to the CPU Bus Unit's Operation Manual for more details on the mes-
sage communications functions.

269



Serial Communications

Section 6-3

6-3-2 No-protocol Communications

The following table lists the no-protocol communication functions available in
CS/CJ PLCs.

Transfer direction Method Max. amount Frame format Other
of data Start code End code functions
Data transmission Execution of TXD(236) |256 bytes Yes: 00to FF | Yes: Send delay
(PLC - External device) in the program* No: None 00 to FF or CR+LF |time (delay
No: None between TXD

execution and
sending data
from specified
port): 0 to
99,990 ms
(unit: 10 ms)

Data reception
(External device — PLC)

Execution of RXD(235) |256 bytes
in the program

Procedure

270

Note A transmission delay or “no-protocol mode delay” can be specified in the PLC

Setup (address 162). This setting causes a delay of up to 30 seconds
between execution of TXD(236) and the transmission of data from the speci-
fied port.

Set the PLC Setup from a Pro- Programming Console
gramming Device. Set addresses 160 to 163. In particular, set
(Settings such as the communica- | the communications mode to no-protocol
tions mode and parameters.) mode, set the start code, end code, amount of
data, and no-protocol mode delay.

(Refer to CX-Programmer User Manual for
CX-Programmer procedures.)

Power OFF

Connect the CPU Unit and external
device through the RS-232C port

v

Set the DIP switch on the front of Turn pin 5 OFF
the CPU Unit.

PLC - External device External device - PLC

‘ Execute TXD(236). ‘ | Execute RXD(235). |

Message Frame Formats

Data can be placed between a start code and end code for transmission by
TXD(236) and frames with that same format can be received by RXD(235).
When transmitting with TXD(236), just the data from 1/O memory is transmit-
ted, and when receiving with RXD(235), just the data itself is stored in /O



Serial Communications Section 6-3

memory. Up to 256 bytes (including the start and end codes) can be trans-
ferred in no-protocol mode.

The following table shows the message formats that can be set for transmis-
sions and receptions in no-protocol mode. The format is determined by the
start code (ST) and end code (ED) settings in the PLC Setup.

Start code End code setting
setting No Yes CR+LF
No data data+ED data+CR+LF
(data: 256 bytes max.) (data: 255 bytes max.) (data: 254 bytes max.)
Yes ST+data ST+data+ED ST+data+CR+LF
(data: 255 bytes max.) (data: 254 bytes max.) (data: 253 bytes max.)

Note

 When more than one start code is used, the first start code will be effec-
tive.

* When more than one end code is used, the first end code will be effective.

1. If the data being transferred contains the end code, the data transfer will
be stopped midway. In this case, change the end code to CR+LF,

2. Thereis a setting in the PLC Setup (address 162: no-protocol mode delay)
that will delay the transmission of data after the execution of TXD(236).

No-protocol mode
transmission delay

Transmission

Time
Execution of TXD(236)

Refer to the CJ-series Programmable Controllers Programming Manual
(W340) for more details on TXD(236) and RXD(235).

6-3-3 NT Link (1:N Mode)

Note

In the CS/CJ Series, communications are possible with PTs (Programmable
Terminals) using NT Links (1:N mode).

Communications are not possible using the 1:1-mode NT Link protocol.

High-speed NT Links are possible in addition to the previous standard NT
Links by using the PT system menu and the following PLC Setup settings (nhot
supported by CS-series pre-EV1 CS1 CPU Units). High-speed NT Links are
possible, however, only with the NT31(C)-V2 or NT631(C)-V2 PTs.

271



Serial Communications Section 6-3
PLC Setup
Communications Programming Name Settings Default values | Other conditions
port Console setting contents
address
Peripheral port 144 Serial communica- | 02 Hex: NT Link 00 Hex: Host Link | Turn ON pin 4 on
Bits: 8to 11 |[tions mode (2:N mode) the CPU Unit DIP
145 Baud rate 00 to 09 Hex: 00 Hex: Standard switch.
Bits: Oto7 Standard NT Link | NT Link
OA Hex: High-
speed NT Link
(see note 1)
150 NT Link mode 0to 7 Hex 0 Hex (Max. unit | ---
Bits: Oto3 maximum unit No. 0)
number
RS-232C port 160 Serial communica- | 02 Hex: NT Link 00 Hex: Host Link | Turn OFF pin 5 on
Bits: 8to 11 tions mode (1:N mode) the_ CPU Unit DIP
161 Baud rate 00 to 09 Hex: 00 Hex: Standard switch.
Bits: Oto7 Standard NT Link | NT Link
OA Hex: High-
speed NT Link
(see note 1)
166 NT Link mode 0to 7 Hex 0 Hex (Max. unit | ---
Bits: Oto3 maximum unit No. 0)
number
Note Set the baud rate to 115,200 bps when making settings with the CX-Program-
mer.
PT System Menu Set the PT as follows:
1,2,3... 1. Select NT Link (1:N) from Comm. A Method or Comm. B Method on the

Memory Switch Menu under the System Menu on the PT Unit.
2. Press the SET Touch Switch to set the Comm. Speed to High Speed.

6-3-4 Serial PLC Links (CJ1M CPU Units Only)

Overview

272

Serial PLC Links are supported by CJ1M CPU Units only. They allow data to
be exchanged among CJ1M CPU Units via the built-in RS-232C ports without
requiring special programming. Words are allocated in memory in the Serial
PLC Link Words (CIO 3100 to CIO 3199). RS-232C connections can be used
between CPU Units, or RS-422A/485 connections can be used by connecting
RS-232C-t0-RS-422A/485 converters to the RS-232C ports. CJ1W-CIF11
RS-422A Converters can be used to convert between RS-232C and RS-
422A/485.

A PT that is set for NT Link (1:N) communications can also be used together
on the same network. The polled PT uses the network to communicate in an
NT link (1:N) with the polling CPU Unit. When a PT is connected, however, the
addresses in the Serial PLC Link Words corresponding to the PT’s unit num-
ber are undefined.



Serial Communications

Section 6-3

Specifications

System Configuration

Note

Data Refresh Methods

Complete Link Method

Item Specifications

Connection method | RS-232C or RS-422A/485 connection via the CPU Unit's RS-
232C port.

Allocated data area | Serial PLC Link Words:
CIO 3100 to CIO 3199 (Up to 10 words can be allocated for
each CPU Unit.)

Number of Units 9 Units max., comprising 1 Polling Unit and 8 Polled Units (A
PT can be placed on the same network in an NT Link (1:N),
but it must be counted as one of the 8 Polled Units.)

CPU Unit
Polling Unit
CPU Unit
Polling Unit
RS-422/485 "
Swer T T 7
RS-422A
Converter
(See
note 1.) RS-232C
CPU Unit CPU Unit PT CPU Unit
kPoIIed Unit No. 0 Polled Unit No. 1 Unit No. 2 \_ Polled Unit No. y
hd
Number of Polled Units: 8 max. NS-ALOO2 when using
(See note 2.) an NS-series PT -
CPU Unit

OR  polied Unit No. 0

1. The CJ1W-CIF11 is not insulated and the total transmission distance is 50
meters max. If the total transmission distance is greater than 50 meters,
use the insulated NT-ALOO1 and do not use the CJ1W-CIF11. If only the
NT-ALOO1 is used, the total transmission distance can is 500 meters max.

2. Up to 8 Units, including the PT and Polled Units, can be connected to the
Polling Unit when a PT set for Serial PLC Link communications is on the
same network.

The following two methods can be used to refresh data.

e Complete link method

* Polling Unit link method
The data from all nodes in the Serial PLC Links are reflected in both the Poll-
ing Unit and the Polled Units. (The only exceptions are the address allocated

to the connected PT’s unit number and the addresses of Polled Units that are
not present in the network. These data areas are undefined in all nodes.)

273



Serial Communications Section 6-3

Example: Complete link method, highest unit number: 3.

In the following diagram, Polled Unit No. 2 is either a PT or is a Unit not
present in the network, so the area allocated for Polled Unit No. 2 is undefined

in all nodes.
Polling Unit Polled Unit No.O Polled Unit No.1 Polled Unit No.3
Local area Polling Unit »Polling Unit »Polling Unit
Polled Unit Polled Unit Polled Unit
oo M - Local area M neo > oo
Polled Unit Polled Unit Polled Unit
NoLl < No.l < Local area P ol
Undefined Undefined Undefined Undefined
Polled Unit Polled Unit Polled Unit
No.3 < No.3 < No.3 < Local area
(Not used) (Not used) (Not used) (Not used)
(Not used) (Not used) (Not used) (Not used)
(Not used) (Not used) (Not used) (Not used)
(Not used) (Not used) (Not used) (Not used)
Polling Unit Link Method The data for all the Polled Units in the Serial PLC Links ar reflected in the Poll-

ing Unit only, and each Polled Unit reflects the data of the Polling Unit only.
The advantage of the Polling Unit link method is that the address allocated for
the local Polled Unit data is the same in each Polled Unit, allowing data to be
accessed using common ladder programming. The areas allocated for the
unit numbers of the PT or Polled Units not present in the network are unde-
fined in the Polling Unit only.

Example: Polling Unit link method, highest unit number: 3.

In the following diagram, Polled Unit No. 2 is a PT or a Unit not participating in
the network, so the corresponding area in the Polling Unit is undefined.

Polling Unit Polled Unit No.O Polled Unit No.1 Polled Unit No.3
Local area Polling Unit »Polling Unit »Polling Unit
Rolledunit 4 Local area Local area Local area
Rolled unit | (Net-used-) ’7 (Not used.) (Not used.)
Undefined (Not used.) (Not used.) (Not used.)
Rolledunit (Net-used-) (Netused.) (Not used.)
(Not used.) (Not used.) (Not used.) (Not used.)
(Not used.) (Not used.) (Not used.) (Not used.)
(Not used.) (Not used.) (Not used.) (Not used.)
(Not used.) (Not used.) (Not used.) (Not used.)

274



Serial Communications Section 6-3
Allocated Words
Complete Link Method
Address Link words 1 word 2 words 3 words to 10 words
CIO 3100 Polling Unit CIO 3100 |[CIO 3100to |CIO 3100to CIO 3100 to
ClO 3101 ClO 3102 ClO 3109
Polled Unit No. O ClO 3101 [CIO 3102to |[CIO 3103to CIO 3110to
CIO 3103 ClO 3105 ClO 3119
Polled Unit No. 1 ClO 3102 |CIO 3104to |CIO 3106 to ClO 3120to
CIO 3105 ClO 3108 ClO 3129
Polled Unit No. 2 ClO 3103 |CIO 3106to |CIO 3109 to ClO 3130to
CIO 3107 ClO 3111 ClO 3139
Polled Unit No. 3 ClO 3104 |ClO 3108to [ClO 3112to ClO 3140 to
. CIO 3109 CIO 3114 CIO 3149
Serial PLC -
Link Words Polled Unit No. 4 ClO 3105 |ClO 3110to [CIO 3115t0 ClO 3150 to
CIO 3111 CIO 3117 CIO 3159
Polled Unit No. 5 ClO 3106 |ClO 3112to |[ClO 3118to ClO 3160 to
CIO 3113 CIO 3120 CIO 3169
Polled Unit No. 6 ClO 3107 |ClO 3114to |[CIO 3121to ClO 3170 to
CIO 3115 CIO 3123 CIO 3179
Polled Unit No. 7 ClO 3108 [CIO 3116to |ClO 3124 to CIO 3180 to
CIO 3117 CIO 3126 CIO 3189
CIO 3199 Not used. CIO 3109 [CIO 3118to |ClO 3127 to CIO 3190 to
to CIO 3199 CIO 3199 CIO 3199
ClO 3199
Polling Unit Link Method
Address Link words 1 word 2 words 3 words to 10 words
CIO 3100 Polling Unit ClO 3100 |CIO 3100to |CIO 3100 to ClO 3100 to
CIO 3101 CIO 3102 CIO 3109
Polled Unit No. 0 ClO 3101 |ClO 3102to |[ClO 3103 to ClO 3110to
CIO 3103 CIO 3105 CIO 3119
Polled Unit No. 1 ClO 3101 [CIO 3102to |CIO 3103to CIO 3110to
CIO 3103 CIO 3105 CIO 3119
Polled Unit No. 2 ClO 3101 [CIO 3102to |CIO 3103to CIO 3110to
CIO 3103 CIO 3105 CIO 3119
Polled Unit No. 3 ClO 3101 [ClO 3102to |CIO 3103to CIO 3110to
. CIO 3103 ClO 3105 ClO 3119
Serial PLC -
Link Words Polled Unit No. 4 CIO 3101 [CIO 3102to |CIO 3103to CIO 3110to
CIO 3103 ClO 3105 ClO 3119
Polled UnitNo.5  |CIO 3101 |CIO 3102to |CIO 3103 to ClO 3110 to
CIO 3103 ClO 3105 ClO 3119
Polled Unit No. 6 CIO 3101 [CIO 3102to |CIO 3103to CIO 3110to
CIO 3103 ClO 3105 ClO 3119
Polled Unit No. 7 ClO 3101 |CIO 3102to |[CIlO 3103 to ClO 3110to
CIO 3103 ClO 3105 ClO 3119
CIO 3199 Not used. ClO 3102 |CIO 3104to |CIO 3106 to ClO 3120to
to CIO 3199 ClO 3199 ClO 3199
CIO 3199

275




Serial Communications

Section 6-3

Procedure

Settings at the Polling Unit

1,23..

Settings at the Polled Units

1,23..

The Serial PLC Links operate according to the following settings in the PLC
Setup.

1. Setthe serial communications mode of the RS-232C communications port
to Serial PLC Links (Polling Unit).

2. Setthe link method to the Complete Link Method or Polling Unit Link Meth-
od.

3. Set the number of link words (up to 10 words for each Unit).
4. Setthe maximum unit number in the Serial PLC Links (0 to 7).

1. Setthe serial communications mode of the RS-232C communications port
to Serial PLC Links (Polled Unit).

2. Set the unit number of the Serial PLC Link Polled Unit.

PLC Setup
Settings at the Polling Unit
Item PLC address Set value Default Refresh timing
Word Bit
RS-232C Serial communica- | 160 11to 08 8 hex: Serial PLC Links |0 hex Every cycle
port setting |tions mode Polling Unit
Port baud rate 161 07 to 00 00 to 09 hex: Standard 00 hex
OA hex: High-speed (See
note 2.)
Link method 166 15 0: Complete links 0
1: Polling Unit links
Number of link 07 to 04 1to A hex 0 hex (See
words note 1.)
Eighest unit num- 03 to 00 0to 7 hex 0 hex
er

Note

Settings at the Polled Unit

1. Automatically allocates 10 words (A hex) when the default setting of 0 hex
is used.

2. When the CX-Programmer is set, specify 115,200 bits/s.

Item PLC address Set value Default Refresh timing
Word Bit
RS-232C Serial communica- | 160 11to 08 7 hex: Serial PLC Link 0 hex Every cycle
port set- tions mode Polled Unit
tings Port baud rate 161 07 to 00 00 to 09 hex: Standard | 00 hex
OA hex: High-speed (See
note.)
Polled Unit unit 167 03 to 00 0to 7 hex 0 hex
number

276

Note When the CX-Programmer is set, specify 115,200 bits/s.



Serial Communications

Section 6-3

Related Auxiliary Area Flags

Name Address Details Read/write Refresh timing
RS-232C Port A39204 Turns ON when a com- Read ¢ Cleared when power is turned ON.
Communica- munications error occurs + Turns ON when a communications error
tions Error Flag at the RS-232C port. occurs at the RS-232C port.
1: Error « Turns OFF when the port is restarted.
0: Normal « Disabled in peripheral bus mode and NT
link mode.
RS-232C Port A39300 to When the RS-232C port |Read ¢ Cleared when power is turned ON.
Communicating | A39307 is being used in NT link « Turns ON the bit corresponding to the
with PT Flag mode, the bit correspond- unit number of the PT/Polled Unit that is
(See note.) ing to the Unit performing communicating via the RS-232C port in
gol\rl“rg_lig'ggt;‘;”&v‘(’:'gr?: NT link mode or Serial PLC Link mode.
spo.ndlto unit numbers 0 . gits (;O to 07 c_orr;espond to unit numbers
to 7, respectively. to 7, respectively.
1: Communicating
0: Not communicating
RS-232C Port A52600 Turn ON this bit to restart | Read/write » Cleared when power is turned ON.
Restart Bit the RS-232C port. - Turned ON when restarting the RS-232C
port, (except when communicating in
peripheral bus mode).

Note: Depending on the system, the bit may
automatically turn OFF when restart
processing is completed.

RS-232C Port A52800 to When an error occurs at | Read/write » Cleared when power is turned ON.
Error Flag A52807 the RS-232C port, the + When an error occurs at the RS-232C
corresponding error code port, the corresponding error code is
is stored. stored.
Bit 00: Not used. - Depending on the system, the flag may
Bit 01: Not used. be cleared when the RS-232C port is
Bit 02: Parity error restarted.
Bit 03: Framing error « Disabled during peripheral bus mode.
Bit 04: Overrun error e InNT !ink m(t))?eci only bit 05 (timeout
Bit 05: Timeout error | grrc_)r)l I;'Legi_ T( ' q v the followi
. n Seria ink mode, only the following
Bit 06: Not used. bits are enabled.
Bit 07: Not used. Error at the Polling Unit:
Bit 05: Timeout error
e CHECK Error at the Polled Unit:
Bit 05: Timeout error
Bit 04: Overrun error
Bit 03: Framing error
RS-232C Port A61902 Turns ON when the com- | Read/write » Cleared when power is turned ON.

Settings
Changed Flag

munications conditions of
the RS-232C port are
being changed.

1: Changed
0: No change

¢ Turns ON while communications condi-
tions settings for the RS-232C port are
being changed.

¢ Turns ON when the CHANGE SERIAL
PORT SETUP instruction (STUP(237)) is
executed.

¢ Turns OFF again when the changes to
settings are completed.

Note In the same way as for the existing NT Link (1:N), the status (communicating/
not communicating) of PTs in the Serial PLC Link can be checked from the
Polling Unit (CPU Unit) by reading the RS-232C Port Communicating with PT
Flag (A393 bits 00 to 07 for unit numbers 0 to 7).

277



Changﬂ] the Timer/Counter PV Refresh Mode Section 6-4

6-4 Changing the Timer/Counter PV Refresh Mode

6-4-1

278

Overview

Note

Previously, CS1 CPU Units used only BCD for the timer/counter PV refresh
mode. Therefore, all timer/counter settings were input as BCD values. Other
CPU Units (see notes 1 and 2) can use either BCD mode or binary mode to
refresh the present values of timer and counter instructions (see note 3).

When binary mode is used, the previous timer/counter setting time of 0 to
9999 can be expanded to 0 to 65535. Binary data calculated using other
instructions can also be used for the timer/counter set values. The timer/
counter PV refresh mode can also be specified when the timer/counter set
value is specified as an address (indirect specification). (The setting of the
mode as BCD mode or binary mode will determine whether the contents of
the addressed word are taken as a BCD or binary value.)

There are differences in the instruction operands for BCD mode and binary
mode, however, so check and understand the differences between the BCD
and binary modes before changing the timer/counter PV refresh mode.

1. Here, the CPU Units other than CS1 CPU Units are as follows:
e CS1-H CPU Units
» CJ1-H CPU Units
« CJIM CPU Units
« CS1D CPU Units

2. When the mnemonic is monitored from the Programming Console for CS1-
H/CJ1-H CPU Units manufactured on or before 31 May 2002 with the tim-
er/counter PV refresh mode set to binary mode, the mnemonic of the bina-
ry is displayed as the mnemonic or the BCD instruction (example: TIMX
#0000 &16 is displayed as TIM #0000 &16), but operations are performed
in binary mode.

3. The PV refresh mode can be selected with CX-Programmer Ver 3.0 only.
Mode selection is not supported by CX-Programmer Ver 2.1 or earlier, or
the Programming Consoles.

4. CX-Programmer Ver. 2.1 or earlier cannot read user programs for the CPU
Unit containing binary-mode instructions, but it can read those set using
BCD-mode instructions.



Changﬂ] the Timer/Counter PV Refresh Mode

Section 6-4

6-4-2 Functional Specifications

Item

Details

Timer/counter PV refresh
mode setting method

Must be set using CX-Programmer Ver.3.0 (not sup-
ported by CX-Programmer Ver 2.1 or earlier).

Set in the PLC properties of CX-Programmer Ver.3.0.

Supported CPU Units

CS1-H/CJ1-H CPU Units from Lot No. 020601 (man-
ufactured on 1 June 2002) or later (see note 1), and

CJ1M CPU Units.

Mode BCD mode Binary mode
Mnemonic Same as previ- | X added to BCD mode mnemonic
ous models Example: TIMX
Example: TIM
Function code Same as previ- | New codes
ous models
PV/SV range #0000 to #9999 | &0 to &65536 #0000 to #FFFF
PV display on Programming |BCD Decimal Hexadecimal
Device (CX-Programmer Example: #0100 | Example: &100 |Example: #64
Ver.3.0 or Programming Con-
sole)

Note When the mnemonic is monitored from the Programming Console for CS1-H/
CJ1-H CPU Units manufactured on or before 31 May 2002 with the timer/
counter PV refresh mode set to binary mode, the mnemonic of the binary is
displayed as the mnemonic or the BCD instruction (example: TIMX #0000
&16 is displayed as TIM #0000 &16), but operations are performed in binary

mode.

Checking the CPU Unit Lot Number

1,23..

1. The lot number is printed on the bottom of the front panel (CS Series) or
the right corner of the top of the Unit (CJ Series), and is comprised of the
last two digits of the year, the month, and the day, in that order, as shown

in the following diagram.

Example: 020601 (Manufactured on 1 June 2002.)

CS-series CPU Unit

-.I The leftmost 6 digits indicate the date code.

CJ-series CPU Unit

020601

2. Check which mode is selected by putting the CX-Programmer online,
opening the 1/0O Table Window, and selecting Unit Information - CPU
Unit. The lot No. will be displayed in the same format as shown in the
above diagram, i.e., comprised of the last two digits of the year, the month,
and the day, in that order.

279



Changﬂ] the Timer/Counter PV Refresh Mode Section 6-4

6-4-3 BCD Mode/Binary Mode Selection and Confirmation

When writing a new program, the BCD mode/binary mode is selected in the
PLC property settings in CX-Programmer Ver 3.0.

Note The BCD mode/binary mode selection is supported by CX-Programmer Ver
3.0 or later only. CX-Programmer Ver 2.1 or earlier versions do not allow
mode selection.

CX-Programmer

Using BCD mode Ver.3.0 BCD/binary mode is (P:rogralmmlng
| selected under the PLC onsole Using BCD mode
™ —1 properties. - PP—
0000 The Programming Console
cannot be used to select the Set value #0010
— ™
— A
Using binary mode
Transferring CS1-H/CJ1-H/CJ1M/
user program CS1D CPU Unit 000001 TIMX
Using binary mode Set value &10
TIMX N Timer/counter PV o
» refresh mode setting v
000 (See note.)
&10
User program

Note: The timer/counter PV
refresh mode setting is
stored in the user
program.

Mnemonics:
Example using BCD mode: TIM
Example using binary mode: TIMX

BCD Mode/Binary Mode Selection

1,2,3... 1. Select the PLC name, click the right mouse button, and select PLC Prop-
erties.

PLCG Properties

ﬂ General l Protection |
Name:  NewPLGT Hode

Type:  C31G-H CFU45
¥ Lse o
[ Dizplay dialog to show PLG Mamaory Backup Status

W Uze [R/DRz independently per tazk

<I_Fxgcute Timer/Gounter as Binary —
X
\

i N T B

Select this check box to enable the setting.

2. Click the General Tab, and select Execute Timers/Counters as Binary.
* Not selected (default): BCD mode
* Selected : Binary mode

The timer/counter PV refresh mode set value set under the PLC properties
will be stored in the CPU Unit’'s user memory when the user program is
transferred from the CX-Programmer to the CPU Unit.

280



Changﬂ] the Timer/Counter PV Refresh Mode Section 6-4

When the setting is changed, the following dialog box will be displayed au-
tomatically.

ogrammer w3.0

Click the OK Button to execute the program check. The program check
results will be displayed in the output window.

Example: The TIM instruction has been used even though the mode has been
changed to binary mode.

i el [ o TIMis displayed i
] 10 Table . IS displayedin

| Settings ( TIM > red.

g Memary

E‘a MewPrograml {0}
Symbols

Section] Mo

‘roject £ [4]

Compiline...

L
RROR: Ihetruction TIM iz not available - The timer/counter execution mode iz incarrect at rune 0 (1.9}.

NewPLG1 - 1 error, O warnings.

The program check results are displayed in the output window.

Example: The timer/counter operation mode is different, so TIM
cannot be used.

BCD Mode/ Binary Mode Confirmation

A09915 in the Auxiliary Area (Timer/Counter PV Refresh Mode Flag) can be
used to check whether a CPU Unit is operating in BCD mode or binary mode.

Name Address Details
Timer/Counter PV A09915 0: BCD mode
Refresh Mode Flag 1: Binary mode

6-4-4 BCD Mode/Binary Mode Mnemonics and Data
BCD Mode/Binary Mode Mnemonics

Binary mode mnemonics are indicated by the suffix X added to the BCD mne-
monic.

Example: Mnemonics for the TIMER instruction
BCD mode: TIM
Binary mode: TIMX

281



Changﬂ] the Timer/Counter PV Refresh Mode

Section 6-4

BCD Mode/Binary Mode Data Display

PLC propertY

Meaning of input

Setting range

Example: Timer

and display number: 0000,
symbols Set value: 10 s
BCD mode The # symbol indi- #0000 to #9999 -~
cates the instruction |,
value (a BCD value 0000
when BCD mode is zgggggggg to #0010
used)
Binary mode | The & symbol indi- &0 to &65535 T
cates a decimal or
value. 0000

&0 to &4294967295

&10

The # symbol indi- #0000 to #FFFF
cates the instruction | o,

value (a hexadeci-
mal value when BCD #0000 to #FFFFFFFF "

mode is used.)

TIMX

0000

Note When using the CX-Programmer in either BCD or binary mode, if the numeri-

6-4-5 Restrictions

282

cal value is input without including the input/display symbol # or & indicating
the constant, (e.g., TIM 0000 0010), the timer/counter set value will be input
as an address (e.g., the value in CIO word 0010 will be used as the set value).

* BCD mode and binary mode cannot be used together in the same CPU
Unit.

» When the Programming Console is used to create a new user program, or
to clear memory, the timer/counter PV refresh mode is fixed in BCD
mode.

* When CX-Programmer Ver. 3.0 is used to place the CPU Unit online, the
set value that is stored in the CPU Unit's user memory for the timer/
counter PV refresh mode will be automatically used. If the CPU setting is
different from the setting for the CX-Programmer project, an error will
occur, and the online connection will not be possible. The following mes-
sage will be displayed.

jon mode setti..

Timer/Ciounter execution mode iz
different between Project and
connected PLC.

Project:  Binary mode
PLC: ECD mode

Select one to match the setting

™ Download the program

oL

Select whether to change the CPU Unit setting to that for the CX-Programmer
project or change the CX-Programmer project property setting to that for the
CPU Unit.

» CX-Programmer Ver. 2.1 or earlier cannot read user programs in the CPU
Unit that are set using binary mode, but can read those set using BCD
mode.



Changﬂ] the Timer/Counter PV Refresh Mode Section 6-4

 The differences between the CX-Programmer and Programming Console
operations when an incorrect timer/counter PV refresh mode instruction is
input are as follows:

* CX-Programmer:
An error will occur if an instruction is input for a different mode than that
set as the timer/counter PV refresh mode under PLC properties.
Example: When the PLC in the project is set to binary mode, an error
will occur if TIM is input as the mnemonic. When BCD mode is set, an
error will occur if TIMX is input as the mnemonic.

» Programming Console:
When a function code is input for an instruction for a different mode
that for the timer/counter PV refresh mode set in the CPU Unit, the
mnemonic will automatically be changed to that for the timer/counter

PV refresh mode set in the CPU Unit.

6-4-6 Instructions and Operands
Instructions
Instruction Name Mnemonic
type BCD mode Binary mode

Timer and TIMER (100 ms) TIM TIMX(550)

Counter HIGH-SPEED TIMH(015) TIMHX(551)

Instructions TIMER (10 ms)
ONE-MS TIMER TMHH(540) TMHHX(552)
(2 ms)
ACCUMULATIVE TTIM(087) TTIMX(555)
TIMER (100 ms)
LONG TIMER TIML(542) TIMLX(553)
(100 ms)
MULTI-OUTPUT MTIM(543) MTIMX(554)
TIMER (100 ms)
COUNTER CNT CNTX(546)
REVERSIBLE CNTR(012) CNTRX(548)
COUNTER
RESET TIMER/ CNR(545) CNRX(547)
COUNTER

Block program | TIMER WAIT (100 TIMW(813) TIMWX(816)

instructions ms)
HIGH-SPEED TMHW(815) TMHWX(817)
TIMER WAIT (10 ms)
COUNTER WAIT CNTW(814) CNTWX(818)

283




Changﬂ] the Timer/Counter PV Refresh Mode

Section 6-4

Instructions and Operands

Timer and Counter Instructions

284

TIMER (100 ms)

Instruction name

BCD mode

Binary mode

Mnemonic

TIM

TIMX(550)

S (timer set value)

#0000 to #9999 (BCD)

&0 to &65535 (decimal)

or #0000 to #FFFF (hexa-
decimal)

Setting time (unit: 0.1 s)

0t0999.9s

0to6,553.5s

HIGH-SPEED TIMER (10

ms)

Instruction name

BCD mode

Binary mode

Mnemonic

TIMH(015)

TIMHX(551)

S (timer set value)

#0000 to #9999 (BCD)

&0 to &65535 (decimal)

or #0000 to #FFFF (hexa-
decimal)

Setting time (unit: 0.01s) [0t099.99s 0t0 655.35s
ONE-MS TIMER (1 ms)

Instruction name BCD mode Binary mode
Mnemonic TMHH(540) TMHHX(552)

S (timer set value)

#0000 to #9999 (BCD)

&0 to &65535 (decimal)

or #0000 to #FFFF (hexa-
decimal)

Setting time (unit: 0.001 s) | 0t0 9.999 s 0t0 65.535s
ACCUMULATIVE TIMER (100 ms)
Instruction name BCD mode Binary mode
Mnemonic TTIM(087) TTIMX(555)

S (timer set value)

#0000 to #9999 (BCD)

&0 to &65535 (decimal)

or #0000 to #FFFF (hexa-
decimal)

Setting time (unit: 0.1 s) 0t0999.9s 0t06,553.5s
LONG TIMER (100 ms)
Instruction name BCD mode Binary mode
Mnemonic TIML(542) TIMLX(553)
S, S+1 (timer set values) | #00000000 to #99999999 | &0 to &4294967295 (deci-
(BCD) mal)

or #0000 to #FFFFFFFF
(hexadecimal)

Setting time (unit: 0.1 s) 0t0999.9s 010 6,553.5s

MULTI-OUTPUT TIMER (

100 ms)

Instruction name

BCD mode

Binary mode

Mnemonic

MTIM(543)

MTIMX(554)

S to S-7 (each timer set
value)

#0000 to #9999 (BCD)

&0 to &65535

or #0000 to #FFFF (hexa-
decimal)

0t0999.9s

Setting time (unit: 0.1 s)

0t06,5535s




Changﬂ] the Timer/Counter PV Refresh Mode

Block Program Instructions

Section 6-4
COUNTER
Instruction name BCD mode Binary mode
Mnemonic CNT CNTX(546)

S (counter set value)

#0000 to #9999 (BCD)

&0 to& 65535 (decimal)

or #0000 to #FFFF (hexa-
decimal)

Setting

0 to 9,999 times

0 to 65,535 times

REVERSIBLE COUNTER

Instruction name

BCD mode

Binary mode

Mnemonic

CNTR(012)

CNTRX(548)

S (counter set value)

#0000 to #9999 (BCD)

&0 to &65535 (decimal)

or #0000 to #FFFF (hexa-
decimal)

Setting

0 to 9,999 times

0 to 65,535 times

RESET TIMER/COUNTER

Instruction name BCD mode Binary mode
Mnemonic CNR(545) CNRX(547)
TIMER WAIT (100 ms)

Instruction name BCD mode Binary mode
Mnemonic TIMW(813) TIMWX(816)

S (timer set value)

#0000 or# 9999 (BCD)

&0 to &65535 (decimal)

or #0000 to #FFFF (hexa-
decimal)

Setting time (unit: 0.1 s)

0t0999.9s

01t06,553.5s

HIGH-SPEED TIMER WAIT (10 ms)

Instruction name BCD mode Binary mode
Mnemonic TMHW(815) TMHWX(817)
S (timer set value) #0000 to #9999 (BCD) &0 to &65535 (decimal)
Unit: 0.01 s or #0000 to #FFFF (hexa-

decimal)

Setting time (unit: 0.01s) [0t0999.9s 01t0 655.35s
COUNTER WAIT

Instruction name BCD mode Binary mode
Mnemonic CNTW(814) CNTWX(818)

S (counter set value)

#0000 to #9999 (BCD)

&0 to &65535 (decimal)

or #0000 to #FFFF (hexa-
decimal)

Setting

0 to 9,999 times

0 to 65,535 times

285




Using_] a Scheduled Interrupt asa Hig_]h-precision Timer (CJ1IM Only) Section 6-5

6-5 Using a Scheduled Interrupt as a High-precision Timer
(CJ1M Only)

When using a CJ1M CPU Unit, the following functions allow a scheduled
interrupt to be used as a high-precision timer.
» The scheduled interrupt timer can be input in units of 0.1 ms (high-preci-
sion interval timer).
 Resetting (i.e., restart) is possible using the MSKS(690) instruction (fixed
time to first interrupt).
« Internal timer PVs can be read using the MSKR(692) instruction (interval
timer PV reading)
These functions allow applications such as that shown in the following exam-
ple of a high-precision one-shot timer, where the input bit turning ON acts as a
trigger, causing the output bit to turn ON, and then turn OFF again after a
fixed interval.

Example:

1,2,3... 1. Inputinterrupt task starts when the built-in input bit turns ON.

2. Output bit A turns ON in the input interrupt task, and the MSKS(690) in-
struction is executed to perform a scheduled interrupt reset start.

3. After a fixed interval, the scheduled interrupt task starts, and output bit A
in the scheduled interrupt task turns OFF, and the MSKS(690) instruction
is executed to prohibit a scheduled interrupt.

Inout T oSk Output bit A
Cyclic task [ > !NPul  —»  Inputinterrupt tas turns ON.

interrupt | /—p}————] SET |

on

Scheduled interrupt
reset start.

# QOutput bit A
(SR :
Scheduled interrupt task v turns OFF.
|7_RESET
Fixed interval | | Stop due to fixed
Example: . .
After 0.5 ms) interrupt being

¥
" | prohibited.
#0000

6-5-1 Setting the Scheduled Interrupt to Units of 0.1 ms
The scheduled interrupt time is set using the PLC Setup’s scheduled interrupt
unit time setting and the MSKS(690) instruction.

With CJ1IM CPU Units, the scheduled interrupt time can be set in units of
0.1 ms between a minimum interval of 0.5 ms and the maximum interval of

999.9 ms.
PLC Setup
Item PLC address Set value Default Refresh timing
Word Bit
Scheduled inter- | 195 00to 03 0 hex: 10-ms unit 0 hex When operation starts.
rupt unit time set- 1 hex: 1-ms unit
ting 2 hex: 0.1-ms unit (CJ1IM
CPU Units only)

286



Using_] a Scheduled I nterrupt asaHigh-precision Timer (CJ1IM Only) Section 6-5

6-5-2 Specifying a Reset Start with MSKS(690)

When CJ1M CPU Units are used and the MSKS(690) instruction is used to
start the scheduled interrupt, the internal timer can be reset before starting the
interrupt (this is called a reset start).

This method can be used to specify the time to the first interrupt without using
the CLI(691) instruction.

Scheduled interrupts are started by using the MSKS(690) instruction to set
the scheduled interrupt time (interval between two interrupts). After executing
the MSKS(690) instruction, however, the time required before the first sched-
uled interrupt task starts (first interrupt start time) is fixed only if the CLI(691)
instruction is specified. Therefore, CJ1M CPU Units provide an internal timer
reset start, allowing the time to the first interrupt to be set without using the
CLI(691) instruction.

MSKS(690) Instruction Operand (Only when Scheduled Interrupt Is Specified)

Operand Set value

N (Interrupt identi- 4: Scheduled interrupt 0, normal setting (internal timer not

fier) reset)
5: Scheduled interrupt 1, normal setting (internal timer not
reset)
14: Scheduled interrupt 0, specifies reset start (CJ1M CPU
Units only)
15: Scheduled interrupt 1, specifies reset start (CJ1M CPU
Units only)

6-5-3 Reading the Internal Timer PV with MSKR(692)

CJ1M CPU Units allow reading the PV of the internal timer that measures the
scheduled interrupt time. The time is read from either the scheduled interrupt
start point or the previous scheduled interrupt point. The internal timer PV is
read by executing the MSKR(692) instruction. The unit of time depends on the
scheduled interrupt unit time setting in the PLC Setup, in the same way as for
the scheduled interrupt time.

MSKR(692) Operands (Only when Scheduled Interrupt Is Specified)

Operand Set value
N (Interrupt identifier) | 4: Scheduled interrupt 0, reads scheduled interrupt time (set
value)
5: Scheduled interrupt 1, reads scheduled interrupt time (set
value)

14: Scheduled interrupt 0, reads internal timer PV (CJ1M
CPU Units only)

15: Scheduled interrupt 1, reads internal timer PV (CJ1M
CPU Units only)

287



Startup Setting_js and Maintenance Section 6-6

6-6 Startup Settings and Maintenance

This section describes the following functions related to startup and mainte-
nance.

 Hot Start/Hot Stop Functions

« Startup Mode Setting

» Power OFF Detection Delay Setting

* Disabling Power OFF Interrupts

* RUN Output

* Clock

» Program Protection

* Remote Programming and Monitoring
* Flash Memory

* Setting Startup Conditions

6-6-1 Hot Start/Hot Stop Functions

Operating Mode Change

288

Note

Hot Start

Turn ON the IOM Hold Bit (A50012) to retain all data* in I/O memory when the
CPU Unit is switched from PROGRAM mode to RUN/MONITOR mode to start
program execution.

I/O memory

PROGRAM
Retain CIO and
t other areas

MONITOR or RUN

Hot Stop

When the IOM Hold Bit (A50012) is ON, all data* in I/O memory will also be
retained when the CPU Unit is switched from RUN/MONITOR mode to PRO-
GRAM mode to stop program execution.

MONITOR or RUN I/O memory

Retain CIO and
other areas

PROGRAM

*The following areas of 1/0 memory will be cleared during mode changes
(PROGRAM ~ RUN/MONITOR) unless the IOM Hold Bit is ON: the CIO Area
(I/O Area, Data Link Area, CPU Bus Unit Area, Special I/O Unit Area, Inner
Board Area, SYSMAC BUS Area, I/O Terminal Area, DeviceNet (CompoBus/
D) Area, and Internal I/O Areas), Work Area, Timer Completion Flags, and
Timer PVs. (The Inner Board, SYSMAC BUS, and I/O Terminal Areas are
supported by CS-series CPU Units only.)

Auxiliary Area Flags and Words

Name Address Description

IOM Hold Bit | A50012 |When this bit is ON, all of I/O memory will be retained
when the operating mode is changed (PROGRAM «
RUN/MONITOR).

When the IOM Hold Bit is ON, all outputs from Output Units will be maintained
when program execution stops. When the program starts again, outputs will



Startup Setting_;s and Maintenance Section 6-6

PLC Power ON

have the same status that they had before the program was stopped.
(When the IOM Hold Bit is OFF, instructions will be executed after the outputs
have been cleared.)

In order for all data* in I/O memory to be retained when the PLC is turned on
(OFF - ON), the IOM Hold Bit must be ON and it must be protected in the
PLC Setup (address 80, IOM Hold Bit Status at Startup).

Retain 1/0O memory
Power ON > CIO and

other areas

Auxiliary Area Flags and Words

Name Address Description

IOM Hold Bit A50012 When this bit is ON, all of I/O memory will be
retained when the operating mode is

changed (PROGRAM « RUN/MONITOR).

PLC Setup

Program- Name Setting Default
ming Con-
sole
address

80 bit 15 |IOM Hold Bit Sta- | 0: The IOM Hold Bit is cleared to 0 when |0
tus at Startup power is turned on. (Cleared)

1: The IOM Hold Bit is retained when
power is turned on.

6-6-2 Startup Mode Setting

The CPU Unit’s initial operating mode (when the power is turned on) can be
set in the PLC Setup.

[ Operating mode

|
Power ON
PLC Setup
Program- | Name | Meaning Setting Default
ming
Console
address
81 Startup | Specifies | PRCN: Programming Console’s PRCN: Pro-
Mode operating | mode switch gramming
modeto | prG: PROGRAM mode Console’s
use at mode switch
startup MON: MONITOR mode
RUN: RUN mode

Note If the Startup Mode is set to PRCN (Programming Console’s mode switch) but

a Programming Console isn’'t connected, the CPU Unit will start in RUN
mode. Change the PLC Setup from the default value to start in MONITOR
mode or PROGRAM mode when the power is turned ON. (The CS-series
CS1 CPU Units, however, will start in PROGRAM mode under the same con-
ditions.)

289



Startup Setting_js and Maintenance Section 6-6

6-6-3 RUN Output

Note

& Caution

Some of the Power Supply Units (the C200HW-PA204R, C200HW-PA209R,
and CJ1W-PA205R) are equipped with a RUN output. This output point is ON
(closed) when the CPU Unit is operating in RUN or MONITOR mode and OFF
(open) when the CPU Unit is in PROGRAM mode.

[ Power Supply Unit

—

=
d RUN output

—

This RUN output can be used to create an external safety circuits, such as an
emergency stop circuit that prevents an Output Unit's external power supply
from providing power unless the PLC is on.

When a Power Supply Unit without a RUN output is used, an equivalent out-
put can be created by programming the Always ON Flag (Al) as the execu-
tion condition for an output point from an Output Unit.

If Output Unit's external power supply goes on before the PLC’s power supply,
the Output Unit may malfunction momentarily when the PLC first goes on. To
prevent any malfunction, add an external circuit that prevents the Output
Unit's external power supply from going on before the power supply to the
PLC itself. Create a fail-safe circuit like the one described above to ensure
that power is supplied by an external power supply only when the PLC is
operating in RUN or MONITOR mode.

6-6-4 Power OFF Detection Delay Setting

Normally a power interruption will be detected about 10 to 25 ms (2 to 5 ms
for DC power supplies) after the power supply voltage drops below 85% of the
minimum rated value(80% for DC power supplies). There is a setting in the
PLC Setup (address 225 bits 0 to 7, Power OFF Detection Delay Time) that
can extend this time by up to 10 ms (up to 2 ms for DC power supplies).
When the power OFF interrupt task is enabled, it will be executed when the
power interruption is confirmed, otherwise the CPU will be reset and operation
will be stopped.

Related Settings

Address Name Meaning Setting Default
CIO 256, |Power Set the timeto |00 to OA (Hex): 0 to 10 ms 00 (Hex):
bits 00to | OFF delay before 0ms
07 Detection |detecting a

Delay power interrup-
tion.

6-6-5 Disabling Power OFF Interrupts

290

This function is supported only by the CS1-H, CJ1-H, CJ1M, or CS1D CPU
Units.

With CS1-H, CJ1-H, CJ1M, or CS1D CPU Units, areas of the program can be
protected from power OFF interrupts so that they will be executed before the
CPU Unit even if the power supply is interrupted. This is achieved by using
the DISABLE

INTERRUPTS (DI(693)) and ENABLE INTERRUPTS (EI(694)) instructions.



Startup Setting_;s and Maintenance Section 6-6

This function can be used with sets of instructions that must be executed as a
group, e.g., so that execution does not start with intermediate stored data the
next time power is turned ON.

Procedure
1,2,3... 1. Set the Disable Setting for Power OFF Interrupts in A530 to A5A5 Hex to
enable disabling Power OFF Interrupts.

2. Enable disabling Power OFF Interrupts in the PLC Setup (this is the default
setting).

3. Use DI(693) to disable interrupts before the program section to be protect-
ed and then use EI(694) to enable interrupts after the section. All instruc-
tions between DI(693) and EI(694) will be completed before the Power
OFF Interrupt is executed even if the power interruption occurs while exe-
cuting the instructions between DI(693) and EI(694).

Execution condition
—' I DT E— Interrupts disabled.

Power interrupted.

Instructions executed.

- Interrupts enabled, causing
CPU Unit to be reset.

Power supply drops
below 85% of rated

value (80% for DC Power interruption

CPU Unit reset
(forced end)

) detected.
power suppvlles). o v
D Instructions executed E
’ ‘ LI throuah EI(694). u Stop
‘ Power OFF 10 ms - Power

detection time ~ OFF detection
+ Power OFF delay (Power OFF
detection confirmation time)

delay

Related Settings

Name Address Meaning
Disable Setting A530 Enables using DI(693) to disable power OFF inter-
for Power OFF rupt processing (except for execution of the Power
Interrupts OFF Interrupt Task) until EI(694) is executed.

AS5A5 Hex: Enables using DI(693) to disable power
OFF interrupt processing

Any other value: Disables using DI(693) to disable
power OFF interrupt processing

6-6-6 Clock Functions

The CS/CJ-series PLCs have the following clock functions:
» Monitoring of the time that power interruptions occurred
» Monitoring of the time that the PLC was turned on
» Monitoring of the total time that the PLC has been on

291



Startup Setting_js and Maintenance Section 6-6

Note The CS-series CS1 CPU Units are shipped without the backup battery

installed, and the CPU Unit’s internal clock will be read 00/01/01 00:00:00 or
possibly another value when the battery is connected. To use the clock func-
tions, connect the battery, turn the power ON, and set the time and date with a
Programming Device (Programming Console or CX-Programmer) or the FINS
command (07 02, CLOCK WRITE). The CPU Unit’s internal clock will begin
operating once it has been set.

Auxiliary Area Flags and Words

Name Addresses Function
Clock data A35100 to A35107 | Second: 00 to 59 (BCD)

A35108 to A35115 |Minute: 00 to 59 (BCD)

A35200 to A35207 |Hour: 00 to 23 (BCD)

A35208 to A35215 | Day of the month: 00 to 31 (BCD)

A35300 to A35307 | Month: 00 to 12 (BCD)

A35308 to A35315 | Year: 00 to 99 (BCD)

A35400 to A35407 | Day of the week:

00: Sunday, 01: Monday,

02: Tuesday, 03: Wednesday,

04: Thursday, 05: Friday, 06: Saturday

Start-up Time A510 and A511 Contain the time at which the power
was turned on.

Power Interruption A512 and A513 Contain the time at which the power

Time was last interrupted.

Total Power ON Time |A523 Contains the total time (in binary) that

the PLC has been on in 10-hour units.

Related Instructions

Instruction Name Function

SEC(065) HOURS TO SEC- | Converts time data in hours/minutes/seconds
ONDS format to an equivalent time in seconds only.

HMS(066) SECONDS TO Converts seconds data to an equivalent time in
HOURS hours/minutes/seconds format.

CADD(730) |CALENDAR ADD | Adds time to the calendar data in the specified

words.

CSUB(731) |CALENDAR SUB- | Subtracts time from the calendar data in the
TRACT specified words.

DATE(735) |CLOCK ADJUST- |Changes the internal clock setting to the setting
MENT in the specified source words.

6-6-7 Program Protection

The CS/CJ-series user program can be write-protected and completely pro-
tected (read/write protection).

292

Write-protection Using the DIP Switch

The user program can be write-protected by turning ON pin 1 of the CPU
Unit's DIP switch. When this pin is ON, it won't be possible to change the user
program from a Programming Device (including Programming Consoles).
This function can prevent the program from being overwritten inadvertently at
the work site.

It is still possible to read and display the program when it is write-protected.



Startup Settings and Maintenance

Section 6-6

Note

Password Protection
1,2,3...

Read/write-protection Using Passwords

Both read and write access to the user program area can be blocked from the
CX-Programmer. Protecting the program will prevent unauthorized copying of
the program and loss of intellectual property. A password is set for program
protection from a Programming Device and access is prevented to the whole
program.

1.

If you forget the password, the program within the PLC cannot be trans-
ferred to the computer. Make a note of the password, and store it in a safe
place.

If you forget the password, programs cannot be transferred from the com-
puter to the PLC. Programs can be transferred from the computer to the
PLC even if the password protection has not been released.

Register a password either online or offline as follows:
a) Selectthe PLC and select Properties from the View Menu.

b) Select Protection from the PLC Properties Dialog Box and input the
password.

Set password protection online as follows:

a) Select PLC, Password Protection, and then Set. The Program Pro-
tection Setting Dialog Box will be displayed.

b) Click the OK button.

Confirming the User Program Date

Auxiliary Area Words

With a CS1-H, CJ1-H, CJ1M, or CS1D CPU Unit, the dates the program and
parameters were created can be confirmed by checking the contents of A090

to A097.
Name Address Description
User Program A090 to The time and date the user program was last over-
Date A093 written in memory is given in BCD.
A09000 to A09007 | Seconds (00 to 59 BCD)
A09008 to A09015 | Minutes (00 to 59 BCD)
A09100 to A09107 | Hour (00 to 23 BCD)
A09108 to A09115 | Day of month (01 to 31 BCD)
A09200 to A09207 | Month (01 to 12 BCD)
A09208 to A09215 | Year (00 to 99 BCD)
A09300 to A09307 | Day (00 to 06 BCD)
Day of the week:
00: Sunday, 01: Monday,
02: Tuesday, 03: Wednesday,
04: Thursday, 05: Friday,
06: Saturday
Parameter Date | A094 to The time and date the parameters were last overwrit-
A097 ten in memory is given in BCD. The format is the
same as that for the User Program Date given above.

293



Startup Settings and Maintenance Section 6-6

6-6-8 Remote Programming and Monitoring

CS/CJ-series PLCs can be programmed and monitored remotely through a
modem or Controller Link network.

1,2,3... 1. Modem Connections

The host link function can operate through a modem, which allows moni-
toring of a distant PLC’s operation, data transfers, or even online editing of
a distant PLC'’s program by phone. All of the Programming Device’s online
operations are supported in these connections.

Programming
Device

Telephone Host Link CPU Unit
RS-232C connection

Modem Modem Rs-232C
| ]

2. Controller Link Network Connections

PLCs in a Controller Link or Ethernet network can be programmed and
monitored through the Host Link. All of the Programming Device’s online
operations are supported in these connections.

Programming

Device
Controller Link Unit Controller Link Unit
CPU Unit / CPU Unit
) 7 (Functions as a 7
RS-232(} | - gateway.) .
Host Link E

6-6-9 Unit Profiles

The following information can be read for CS/CJ-series Units from the CX-
Programer.

» Manufacturing information (lot number, serial number, etc.): Facilitates
providing information to OMRON when problems occur with Units.

* Unit information (type, model number, correct rack/slot position): Provides
an easy way to obtain mounting information.

 User-defined text (256 characters max.): Enables recording information
necessary for maintenance (Unit inspection history, manufacturing line
numbers, and other application information) in Memory Cards.

294



Startup Setting_;s and Maintenance Section 6-6

6-6-10 Flash Memory

Note

This function is supported only by the CS1-H, CJ1-H, CJ1M, or CS1D CPU
Units.

With CS1-H, CJ1-H, CJ1M, or CS1D CPU Units, the user program and
parameters are automatically backed up in flash memory whenever they are
written to or altered in the CPU Unit.

The following data is backed up automatically: User program, parameters
(including the PLC Setup, registered 1/O tables, routing tables, and CPU Bus
Unit data, such as the data link tables).

The data is backed up automatically whenever the user program or parame-
ters are written in the CPU Unit, including for data transfer operations from the
CX-Programmer, writing data from a Programming Console, online editing,
data transfers from a Memory Card or EM file memory;, etc.

The user program and parameter data written to flash memory is automati-
cally transferred to user memory in the CPU Unit at startup.

Data transfer from CX-
CPU Unit — Programmer

Write from Programming
Console

Write from file memory
Online editing from CX-

User Programmer
program
User memory |
Write operation
Automatic } | Automatically restored
y backup when PLC is turned ON.
Flash memory

1. The BKUP indicator on the front of the CPU Unit will light while data is be-
ing written to flash memory. Do not turn OFF the power supply to the CPU
Unit until the backup operation has been completed (i.e., until the BKUP
indicator goes out) after transferring data from the a Programming Device
or file memory, or performing online editing.

2. Only for online editing and only when there is a Battery in the CPU Unit,
the CPU Unit will restart in the previous condition (e.g., with the BKUP in-
dicator lit) even if the power supply is turned OFF before the backup oper-
ation has been completed, although up to 1 minute will be required will be
required to start the CPU Unit. Even in this case (and even if there is a Bat-
tery in the CPU Unit, always be sure that the backup operation has been
completed before turning OFF the power supply if the CPU Unit will be left
unpowered for an extended period of time.

295



Startup Setting_js and Maintenance Section 6-6

The amount of time required to back up data (the time the BKUP indicator will
be lit) will depend on the size of the user program, as shown in the following

table.
User Backup processing time
program size MONITOR mode PROGRAM
Cycle time of 0.4 ms Cycle time of 10.0 ms mode
(example) (example)

10 Ksteps 2s 8s 1s

60 Ksteps 11s 42 s 6s

250 Ksteps 42's 170 s 22s

Note 1. The BKUP indicator will be lit when power is supplied to the CPU Unit.

2. Depending on the type of online editing that was performed, up to 1 minute
may be required to backup data.

&Caution The CS1-H, CJ1-H, CJ1M, and CS1D CPU Units automatically back up the
user program and parameter data to flash memory when these are written to
the CPU Unit. /0 memory (including the DM, EM, and HR Areas), however, is
not written to flash memory. The DM, EM, and HR Areas can be held during
power interruptions with a battery. If there is a battery error, the contents of
these areas may not be accurate after a power interruption. If the contents of
the DM, EM, and HR Areas are used to control external outputs, prevent inap-
propriate outputs from being made whenever the Battery Error Flag (A40204)
is ON.

Note A backup status will be displayed in a Memory Backup Status Window by the
CX-Programmer when backing up data from the CX-Programmer for transfer
operations other than normal data transfers (PLC/Transfer). To obtain this
window, setting to display the backup status dialog box must be checked in
the PLC properties and the window must be selected from the View Menu.
For normal transfer operations, the backup status will be displayed in the
transfer window after the transfer status for the program and other data.

Auxiliary Area Flags

Name Address Meaning
Flash Memory A40310 Turns ON when the flash memory fails.
Error Flag

6-6-11 Startup Condition Settings

This function is supported only by the CS1-H, CJ1-H, CJ1M, or CS1D CPU
Units.

Some Units and Inner Boards require extensive time to start up after the
power supply is turned ON, affecting the startup time of the CPU Unit. The
PLC Setup can be set so that the CPU Unit will start without for these Units to
be initialized.

This setting applies to the ITNC-EIS01-CST and ITNC-EIX01-CST Open Net-
work Controller-CS1 Bus Interface Units. (There are currently no Inner Boards
that are applicable as of October 2001.)

296



Startup Setting_;s and Maintenance Section 6-6

This function is controller by setting the Startup Condition and Inner Board
Setting described in the following table.

Startup conditions PLC Setup
Startup Condition Inner Board Setting
(Programming Console (Programming Console
address 83, bit 15) address 84, bit 15)
To start without wait- | 1: Enable operation without 1: Do not wait for specific
ing for all Units and | waiting. Inner Boards.
Boards
To start without wait- | 1: Enable operation without 0: Wait for all Boards before
ing for all Units (wait | waiting. starting.
for Boards)
To wait for all Units | 0: Always wait for all Units/ Any
and Boards before Boards
starting

Note With CS1 CPU Units, the CPU Unit will not start until all Units and Boards

have completed startup processing.

PLC Setup
Programming Name Setting Default | CPU Unit
Console refresh
address timing
Word Bit
83 15 Startup 0: Wait for Units and Boards. |0: Wait | Power ON
Condition | 1: pon't wait.
84 15 Inner Board | 0: Wait for all Boards. 0: Wait | Power ON
Setting 1: Don't wait for specific
Boards.

Startup Condition

0: If there is one or more of the specific Boards or Units that has not com-
pleted startup processing, the CPU Unit will go on standby in MONITOR or
PROGRAM mode and wait for all Units and Boards.

1: Even if there is one or more of the specific Boards or Units that has not
completed startup processing, the CPU Unit will go ahead and start in MONI-
TOR or PROGRAM mode. The operation for Inner boards, however, also
depends on the following setting.

Inner Board Setting

This setting is used only if the Startup Condition is set to 1 to enable starting
without waiting for specific Units and Boards. This setting is ignored if the
Startup Condition is set to 0.

0: If there is one or more of the specific Boards that has not completed startup
processing, the CPU Unit will go on standby in MONITOR or PROGRAM
mode and wait for all Boards.

1: Even if there is one or more of the specific Boards that has not completed
startup processing, the CPU Unit will go ahead and start in MONITOR or
PROGRAM mode.

297



Diagnostic Functions

Section 6-7

6-7 Diagnostic Functions

6-7-1

298

Error Log

Note

This section provides a brief overview of the following diagnostic and debug-
ging functions.

* Error Log

» Output OFF Function

e Failure Alarm Functions (FAL(006) and FALS(007))
* Failure Point Detection (FPD(269)) Function

Each time that an error occurs in a CS/CJ-series PLC, the CPU Unit stores
error information in the Error Log Area. The error information includes the
error code (stored in A400), error contents, and time that the error occurred.
Up to 20 records can be stored in the Error Log.

In addition to system-generated errors, the PLC records user-defined
FAL(006) and FALS(007) errors, making it easier to track the operating status
of the system.

Refer to the section on troubleshooting in the CS/CJ Series Operation Manual
for details.

A user-defined error is generated when FAL(006) or FALS(007) is executed in
the program. The execution conditions of these instructions constitute the
user-defined error conditions. FAL(006) generates a non-fatal error and
FALS(007) generates a fatal error that stops program execution.

When more than 20 errors occur, the oldest error data (in A100 to A104) is
deleted, the remaining 19 records are shifted down by one record, and the
newest record is stored in A195 to A199.



Diagnostic Functions

Section 6-7
Error code  Order of
occurrence
4102 1 Error Log Area
A100 4 1 0 2 |Errorcode
A101 Error contents
00F7 2 A102 Minute, second
A103 Day, hour Time of
A104 Year, month ocerence
A105 0] 0 F 7 |Errorcode
A106 Error contents
A107 Minute, secon
A108 Day, hour Time of
A109 Year, month oceurrence
009D |20
A195 0 0 9 D |Errorcode
A196 Error contents
A197 Minute, second
[, A198 Day, hour Time of
A199 Year, month oceurrence
A300CH | |

T— Error Log Pointer

The number of records is stored in binary in the Error Log Pointer (A300). The
pointer is not incremented when more than 20 errors have occurred.

6-7-2 Output OFF Function

Note

Application Precaution for
DeviceNet

6-7-3 Failure Alarm

As an emergency measure when an error occurs, all outputs from Output
Units can be turned OFF by turning ON the Output OFF Bit (A50015). The
operating mode will remain in RUN or MONITOR mode, but all outputs will be
turned OFF.

Normally (when IOM Hold Bit = OFF), all outputs from Output Units are turned
OFF when the operating mode is changed from RUN/MONITOR mode to
PROGRAM mode. The Output OFF Bit can be used to turn OFF all outputs
without switching to PROGRAM mode and stopping program execution.

When the master function is used with the CS1W-DRM21 or CJ1W-DRM21,
all slave outputs will be turned OFF. When the slave function is used, all
inputs to the master will be OFF. When the C200HW-DRM21-V1 is used,
however, slave outputs will not be turned OFF.

Functions

The FAL(006) and FALS(007) instructions generate user-defined errors.
FAL(006) generates a non-fatal error and FALS(007) generates a fatal error
that stops program execution.

When the user-defined error conditions (execution conditions for FAL(006) or
FAL(007)) are met, the Failure Alarm instruction will be executed and the fol-
lowing processing will be performed.

299



Diagnostic Functions

Section 6-7

1,23..

The FAL Error Flag (A40215) or FALS Error Flag (A40106) is turned ON.
The corresponding error code is written to A400.

The error code and time of occurrence are stored in the Error Log.

The error indicator on the front of the CPU Unit will flash or light.

If FAL(006) has been executed, the CPU Unit will continue operating.
If FALS(007) has been executed, the CPU Unit will stop operating. (Pro-
gram execution will stop.)

Operation of FAL(006)

o s~ wDd e

‘ | | [ FAL 002 #0000 ]

When execution condition A goes ON, an error with FAL number 2 is gener-
ated, A40215 (FAL Error Flag) is turned ON, and A36002 (FAL Number 2
Flag) is turned ON. Program execution continues.

Errors generated by FAL(006) can be cleared by executing FAL(006) with FAL
number 00 or performing the error read/clear operation from a Programming
Device (including a Programming Console).

Operation of FALS(007)

| [ FALS 003 #0000 ]

When execution condition B goes ON, an error with FALS number 3 is gener-
ated, and A40106 (FALS Error Flag) is turned ON. Program execution is
stopped.

Errors generated by FAL(006) can be cleared by eliminating the cause of the
error and performing the error read/clear operation from a Programming
Device (including a Programming Console).

6-7-4 Failure Point Detection

300

FPD(269) performs time monitoring and logic diagnosis. The time monitoring
function generates a non-fatal error if the diagnostic output isn’'t turned ON
within the specified monitoring time. The logic diagnosis function indicates
which input is preventing the diagnostic output from being turned ON.

Time Monitoring Function

FPD(269) starts timing when it is executed and turns ON the Carry Flag if the
diagnostic output isn’'t turned ON within the specified monitoring time. The
Carry Flag can be programmed as the execution condition for an error pro-
cessing block. Also, FPD(269) can be programmed to generate a non-fatal
FAL error with the desired FAL number.

When an FAL error is generated, a preset message will be registered and can
be displayed on a Programming Device. FPD(269) can be set to output the
results of logic diagnosis (the address of the bit preventing the diagnostic out-
put from being turned ON) just before the message.

The teaching function can be used to automatically determine the actual time
required for the diagnostic output to go ON and set the monitoring time.




Diagnostic Functions

Section 6-7

FPD(269)

execution

condition
A

Logic Diagnosis Function

FPD(269) determines which input bit is causing the diagnostic output to
remain OFF and outputs that bit's address. The output can be set to bit
address output (PLC memory address) or message output (ASCII).

« If bit address output is selected, the PLC memory address of the bit can
be transferred to an Index Register and the Index Register can be indi-
rectly addressed in later processing.

« If the message output is selected, the bit address will be registered in an
ASCII message that can be displayed on a Programming Device.

First register word
(Diagnostics output destination)

{  FPD #0004 &100 D01000 ]

Monitoring time (0.1-s units): 10 s
Control data
(FAL 004, bit address output)

Carry Flag
| ]

Logic diagnosis

l | Error-processing block

C (Diagnostic output)

execution condition;
B

Time Monitoring:
Monitors whether output C goes ON with 10 seconds after input A. If C
doesn’t go ON within 10 seconds, a failure is detected and the Carry Flag
is turned ON. The Carry Flag executes the error-processing block. Also,
an FAL error (non-fatal error) with FAL number 004 is generated.

Logic Diagnosis:
FPD(269) determines which input bit in block B is preventing output C from
going ON. That bit address is output to D01000 and D01001.

Auxiliary Area Flags and Words

Name Address Operation
Error Code A400 When an error occurs, its error code is stored in
A400.
FAL Error Flag A40215 ON when FAL(006) is executed.
FALS Error Flag A40106 ON when FALS(007) is executed.
Executed FAL Num- | A360 to The corresponding flag is turned ON when an
ber Flags A391 FAL(006) or FALS(007) error occurs.
Error Log Area A100 to The Error Log Area contains information on the
A199 most recent 20 errors.
Error Log Pointer A300 When an error occurs, the Error Log Pointer is

incremented by 1 to indicate where the next error
record will be recorded as an offset from the
beginning of the Error Log Area (A100).

Error Log Pointer A50014 Turn this bit ON to reset the Error Log Pointer
Reset Bit (A300) to 00.

FPD Teaching Bit A59800 Turn this bit ON when you want the monitoring
time to be set automatically when FPD(269) is

executed.

301



Diagnostic Functions

Section 6-7

6-7-5 Simulating System Errors

1,2,3...

Note

This function is supported only by the CS1-H, CJ1-H, CJ1M, or CS1D CPU
Units.

FAL(006) and FALS(007) can be used to intentionally create fatal and non-
fatal system errors. This can be used in system debugging to test display
messages on Programmable Terminals (PTs) or other operator interfaces.

Use the following procedure.
1. Setthe FAL or FALS number to use for simulation in A529. (A529 is used
when simulating errors for FAL(006) and FALS(007).

2. Setthe FAL or FALS number to use for simulation as the first operand of
FAL(006) or FALS(007).

3. Set the error code and error to be simulated as the second operation (two
words) of FAL(006) or FALS(007). Indicate a nonfatal error for FAL(006)
and a fatal error for FALS(007).

To simulate more than one system error, use more than one FAL(006) or
FALS(007) instruction as described above.

Auxiliary Area Flags and Words

Name Address Operation
FAL/FALS Number | A529 Set a dummy FAL/FALS number to use to simu-
for System Error late the system error.
Simulation 0001 to 01FF Hex: FAL/FALS numbers 1 to 511

0000 or 0200 to FFFF Hex: No FAL/FALS number

for system error simulation.

Example for a Battery Error

Execution condition

gl WMoV Set FAL number 100 in A529.
4‘ ‘ &100
A529

MOV Set error code for battery error

#O0F7 (#00F7) in DO0010.
D00010

FAL Generate a battery error using FAL

100 number 100.
D00010

Use the same methods as for actual system errors to clear the simulated sys-
tem errors. Refer to the CS-series Operation Manual or the CJ-series Opera-
tion Manual for details. All system errors simulated with FAL(006) and
FALS(007) can be cleared by cycling the power supply.

6-7-6 Disabling Error Log Storage of User-defined FAL Errors

302

This function is supported only by the CS1-H, CJ1-H, CJ1M, or CS1D CPU
Units.

The PLC Setup provides a setting that will prevent user-defined FAL errors
created with FAL(006) and time monitoring for FPD(269) from being recorded
in the error log (A100 to A199). The FAL error will still be generated even if
this setting is used and the following information will also be output: A40215
(FAL Error Flag), A360 to A391 (Executed FAL Numbers), and A400 (Error
Code.



CPU Process ng Modes

Section 6-8

This function can be used when only system FAL errors need to be stored in
the error log, e.g., when there are many user-defined errors generated by the
program using FAL(006) and these fill up the error log too quickly.

PLC Setup
Programming Name Setting Default | CPU Unit
Console refresh
address timing
Word Bit
129 15 User FAL 0: Record user-defined FAL | O: Whenever
Storage errors in error log. Record | FAL(006)is
Setting 1: Don't record user-defined executed
FAL errors in error log. (every
cycle)

Note The following items will be stored in the error log even if the above setting is

used to prevent user-defined FAL errors from being recorded.

* User-defined fatal errors (FALS(007))

» Non-fatal system errors

* Fatal system errors

 User-simulated nonfatal system errors (FAL(006))
 User-simulated fatal system errors (FALS(007))

6-8 CPU Processing Modes
6-8-1 CPU Processing Modes

Note

Normally, peripheral servicing (see note) is performed once at the end of each
cycle (following I/O refresh) either for 4% of the cycle or a user-set time for
each service. This makes it impossible to service peripheral devices at a rate
faster than the cycle time, and the cycle time is increased by the time required
for peripheral servicing.

With the CS1-H or CJ1-H CPU Units, however, Parallel Processing Modes
are supported that enable processing program execution in parallel with
peripheral servicing. These modes enable faster peripheral servicing and
shorter cycle times, especially when there is extensive peripheral servicing
required. (CJ1M and CS1D CPU Units do not support the Parallel Processing
Modes.)

Peripheral servicing includes non-schedule services required by external
devices, such as event servicing (e.g., communications for FINS commands)
for Special I/O Units, CPU Bus Units, and Inner Boards (CS Series only), as
well as communications port servicing for the peripheral and RS-232C ports
(but not including data links and other special 1/0O refreshing for CPU Bus
Units).

303



CPU Process ng Modes

Section 6-8

Normal Mode

_________________________________________________________________________________________________

’Overseeing processing

)

Program execution

Cycle time

’ I/O refreshing ‘

| Peripheral Servicing|

Program Execution Cycle Peripheral Servicing Cycle

’Overseeing processing

’Overseeing process.ing‘C le time
ycle time for

i peripheral servicing
| Peripheral servicing| l

]

Program execution | cycle time for
program execution

|

’ I/O refreshing

Parallel Processing Modes

304

There are two different Parallel Processing Modes: Parallel Processing with
Synchronous Memory Access and Parallel Processing with Asynchronous
Memory Access.

m Parallel Processing with Asynchronous Memory Access

In this mode, 1/O memory access for peripheral servicing is not synchronized
with 1/O memory access for program execution. In other words, all peripheral
servicing is executed in parallel with program execution, including memory
access. This mode will provide the fastest execution (compared to the other
modes) for both program execution and event processing when there is a
heavy peripheral servicing load.

m Parallel Processing with Synchronous Memory Access

In this mode, 1/0 memory access for peripheral servicing is not executed in
parallel with program execution, but rather is executed following program exe-
cution, just like it is in the normal execution mode, i.e., following the 1/O
refresh period. All other peripheral servicing is executed in parallel with pro-
gram execution.

This mode will provide faster execution that the normal execution mode for
both program execution and event processing. The program execution cycle
time will be longer than that for Parallel Processing with Asynchronous Mem-
ory Access by the time required to refresh 1/O for peripheral servicing.

The cycle times and peripheral servicing responses for Normal, Parallel Pro-
cessing with Asynchronous Memory Access, and Parallel Processing with
Synchronous Memory Access are listed in the following table. (These values



CPU Process ng Modes

Section 6-8

Note

are for a program consisting of basic instructions with a cycle time of 10 ms
and with one Ethernet Unit. These values are provided for reference only and

will vary with the system.)

Item Normal Mode | Parallel Processing with | Parallel Processing
Asynchronous Memory | with Synchronous
Access Memory Access
Cycle time Arbitrarily setto 1 [ 0.9 0.9
Peripheral Arbitrarily setto 1 | 0.4 1.0
servicing

1. Peripheral servicing includes event servicing (e.g., communications for

FINS commands) for Special I/O Units, CPU Bus Units, and Inner Boards
(CS Series only), as well as communications port servicing for the periph-
eral and RS-232C ports (but not including data links and other special I/O
refreshing for CPU Bus Units).

The CS1 CPU Units of version 1 or later and the CS1-H or CJ1-H CPU
Units also support a Peripheral Servicing Priority Mode that will perform
peripheral servicing at a fixed cycle during program execution. It will pro-
vide faster peripheral servicing than the normal processing mode, but pro-
gram execution will be slower. Event response, however, will not be as fast
as the Parallel Processing Modes. Parallel Processing with Asynchronous
Memory Access should thus be used whenever response to events is to
be given priority in processing.

Peripheral servicing cycle time over errors can occur in the CPU Unit as
described in a) and b), below, when parallel processing is used. If this error
occurs, the display on the Programming Device will indicate that the cycle
time is too long, A40515 (Peripheral Servicing Cycle Time Over) will turn
ON, and operation will stop (fatal error)

a) If the peripheral servicing cycle time exceeds 2.0 s, a cycle time over
error will occur. The peripheral servicing cycle time can be monitored
in A268 to detect possible errors before they occur. For example, a
user-defined error can be generated using FAL number 001 if the pe-
ripheral servicing cycle time exceeds 1 s (i.e., if the contents of A268
exceeds 2710 Hex (10000 decimal)).

> EAL A user-defined error will be generated
7268 1 with FAL number 001 by FAL(006) is the
210000 70000 Eesrlpheral servicing cycle time exceeds

b) A peripheral servicing cycle time over error can also occur if the pro-
cessing time for the instruction execution cycle (i.e., the instruction ex-
ecution time) is too short. This time is stored in A266 and A267 in
normal execution mode. As a guideline, if the instruction execution
time is 2 ms or less, a peripheral servicing cycle time over error will oc-
cur and the parallel processing mode cannot be used. When debug-
ging only sections of the program (which can cause a very short
instruction execution time), use normal mode to prevent this error from
occurring.

The Programming Console should be disconnected when user applica-
tions are being run in a parallel processing mode. The Programming Con-
sole will be allocated servicing time to increase the response to
Programming Console keys, and this will increase the peripheral servicing
time and reduce the effectiveness of parallel processing.

305



CPU Processing Modes Section 6-8
PLC Setup
The processing mode is specified in the PLC Setup.

Programming Name Setting Default | CPU Unit
Console refresh
address timing

Word Bit

219 08to |CPU Pro- 00 Hex: Normal Mode 00 Hex: | Start of

15 cessing 01 Hex: Parallel Processing | Normal | operation

Mode with Synchronous Memory Mode
Access
02 Hex: Parallel Processing
with Asynchronous Memory
Access
05 to FF Hex: Time slice pro-
gram execution time for
Peripheral Servicing Priority
Mode (5 to 255 ms in 1-ms
increments)
Settings of 03 and 04 Hex are
not defined (illegal) and will
cause PLC Setup errors (non-
fatal).
Auxiliary Area Flags and Words

Name Address Operation

Peripheral Servicing | A40515 Turns ON when the peripheral servicing cycle

Cycle Time Over time exceeds 2 s. Operation will be stopped.

Peripheral Servicing | A268 Contains the peripheral servicing cycle time when

Cycle Time one of the Parallel Processing Modes (synchro-

nous or asynchronous memory access) is used

and the PLC is in RUN or MONITOR mode. The
time will be in binary between 0.0 and 2000.0 (in
0.1-ms increments).

Instruction Execu- A266 and | In normal mode, only the instruction execution

tion Time (Total of all | A267 time is included. The time is stored as a 32-bit

slice times for pro-
gram execution and
all slice times for
peripheral servicing)

binary value.

00000000 to FFFFFFFF Hex (unit: 0.1 ms)
(0 to 429,496,729.5 ms)

A266: Least-significant word
A267: Most-significant word

Parallel Processing with Asynchronous Memory Access

Program Executions

Overseeing

1/0 bus check and other processing
0.3 ms

Instruction execution time

Total execution time for all instructions

Minimum cycle time calculations

Processing time for a minimum program execution
cycle time

Cyclic ser-
vicing

1/O refresh

1/0 refresh time for each Unit x Number of Units

Special I/O refresh
for CPU Bus Units

Special I/O refresh time for each Unit x Number of
Units

Peripheral
servicing

File access

Peripheral service time set in PLC Setup (default:
4% of cycle time)

306



CPU Process ng Modes

Section 6-8

Peripheral Servicing

Overseeing

Battery check, user program
memory check, etc.

0.2 ms

Peripheral
servicing

Event servicing for Special I/O Units

Event servicing for CPU Bus Units

Peripheral port servicing

RS-232C port servicing

Event servicing for Inner Boards (CS
Series only)

Event servicing for communications
ports (internal logic ports) that are
being used (including background
execution)

Includes event servicing to
access I/0 memory (See note.)

Max. of 1 s for each service.

Note Event servicing to access I/0 memory includes 1) Servicing any received
FINS commands that access I/O memory (I/O memory read/write commands
with common codes beginning with 01 Hex or forced set/reset commands with
common codes beginning with 23 Hex) and 2) Servicing any received C-mode
commands that access 1/0 memory (excluding NT Links using the peripheral
or RS-232C port).

Parallel Processing with Synchronous Memory Access

Program Executions

Overseeing

0.3 ms

1/0 bus check and other processing

Instruction execution time

Total execution time for all instructions

Minimum cycle time calculations

cycle time

Processing time for a minimum program execution

Cyclic ser-
vicing

1/O refresh

1/0 refresh time for each Unit x Number of Units

Special I/O refresh

for CPU Bus Units | Units

Special I/O refresh time for each Unit x Number of

Peripheral
servicing

File access

Event servicing
requiring I/O mem-
ory access (See
note.)

Peripheral service time set in PLC Setup (default:
4% of cycle time)

Peripheral Servicing

Overseeing

Battery check, user program
memory check, etc.

0.2ms

Peripheral
servicing

Event servicing for Special I/O Units

Event servicing for CPU Bus Units

Peripheral port servicing

RS-232C port servicing

Event servicing for Inner Boards (CS
Series only)

Event servicing for communications
ports (internal logic ports) that are
being used (including background
execution)

Except for event servicing to
access I/0 memory (See note.)

Max. of 1 s for each service.

Note Event servicing to access I/O memory includes 1) Servicing any received
FINS commands that access I/O memory (I/O memory read/write commands

307



Peripheral Servicing Priority Mode Section 6-9

with common codes beginning with 01 Hex or forced set/reset commands with
common codes beginning with 23 Hex) and 2) Servicing any received C-mode
commands that access 1/0 memory (excluding NT Links using the peripheral
or RS-232C port).

6-8-2 Parallel Processing Mode and Minimum Cycle Times

If a minimum cycle time is specified when a parallel processing mode is being
used, a wait will be inserted after program execution until the minimum cycle
time has been reached, but peripheral servicing will continue.

6-8-3 Data Concurrency in Parallel Processing with Asynchronous

Memory Access

Data may not be concurrent in the following cases when using Parallel Pro-
cessing with Asynchronous Memory Access.

* When more than one word is read from 1/O memory using a communica-
tions command, the data contained in the words may not be concurrent.

« If an instruction reads more than one word of I/O memory and peripheral
servicing is executed during execution of the instructions, the data con-
tained in the words may not be concurrent.

« If the same word in I/O memory is read by more than instruction at differ-
ent locations in the program and peripheral servicing is executed between
execution of the instructions, the data contained in the word may not be
concurrent.

The following steps can be used to ensure data concurrency when required.
1. Use Parallel Processing with Synchronous Memory Access

2. Usethe IOSP(287) to disable peripheral servicing for where required in the
program and then use IORS(288) to enable peripheral servicing again.

6-9 Peripheral Servicing Priority Mode

308

Peripheral servicing for RS-232C port, the peripheral port, the Inner Board
(CS Series only), CPU Bus Units, and Special /0 Units is normally serviced
only once at the end of the cycle after the 1/O refresh. Either 4% of the cycle
time or a user-set time is allocated to each service. A mode, however, is avail-
able that enables periodic servicing within a cycle. This mode, called the
Peripheral Servicing Priority Mode, is set in the PLC Setup.

Note The Peripheral Servicing Priority Mode can be used with CJ-series CPU Unit
or CS-series CPU Units, but the CS-series CS1 CPU Unit must have a lot
number 001201L1CICICT or later (manufacture date of December 1, 2000 or
later). (Peripheral Servicing Priority Mode is not supported by CS1D.)



Peripheral Servicing Priority Mode Section 6-9

6-9-1 Peripheral Servicing Priority Mode
If the Peripheral Servicing Priority Mode is set, program execution will be
interrupted at the specified time, the specified servicing will be performed, and
program execution will be resumed. This will be repeated through program
execution. Normal peripheral servicing will also be performed after the 1/10
refresh period.
Peripheral Peripheral
servicing servicing Peripheral
:‘ B 71'17 B 7N‘ :‘ B 7'[17 B 7»} !14 B 7'1:17 B 7»: servicing
To: Time slice for program execution
T,: Time slice for peripheral servicing
4
Program | merrupted|  BIO9(AM | imermuptea| SR8 | iemupted | Eicien] 1 renesh | Notmal peripheral
.o oo oo oo |
. To To To To i
ettt >
1cycle

Peripheral Servicing Priority Mode can thus be used to execute periodic ser-
vicing for specified ports or Units along with the normal peripheral servicing.
This enables applications that require priority be given to peripheral servicing
over program execution, such as process control applications that require
rapid response for host monitoring.

* Up to five Units or ports can be specified for priority servicing. CPU Bus
Units and CS/CJ Special I1/0 Units are specified by unit number.

» Only one Unit or port is executed during each slice time for peripheral ser-
vicing. If servicing has been completed before the specified time expires,
program execution is resumed immediately and the next Unit or port is not
serviced until the next slice time for peripheral servicing. It is possible,
however, that the same Unit or port will be serviced more than once dur-
ing the same cycle.

Unit or ports are serviced in the order in which they are detected by the
CPU Unit.

Note 1. Even though the following instructions use the communications ports, they
will be executed only once during the execution cycle even if Peripheral
Servicing Priority Mode is used:
RXD(235) (RECEIVE)
TXD(236) (TRANSMIT)

2. If more than one word is read via a communications command, the con-
currence of the read data cannot be guaranteed when Peripheral Servicing
Priority Mode is used.

3. The CPU Unit might exceed the maximum cycle time when Peripheral Ser-
vicing Priority Mode is used. The maximum cycle time is set in the PLC
Setup as the Watch Cycle Time setting. If the cycle time exceeds the
Watch Cycle Time setting, the Cycle Time Too Long Flag (A40108) will be
turned ON and PLC operation will be stopped. If the Peripheral Servicing
Priority Mode is used, the current cycle time in A264 and A265 should be
monitored and the Watch Cycle Time (address: +209) adjusted as re-
quired. (The setting range is 10 to 40,000 ms in 10-ms increments with a
default setting of 1 s.)

309



Peripheral Servicing Priority Mode Section 6-9

PLC Setup Settings The following settings must be made in the PLC Setup to use the Peripheral

Servicing Priority Mode.
» Slice Time for Program Execution: 5 to 255 ms in 1-ms increments
» Slice Time for Peripheral Servicing: 0.1 to 25.5 ms in 0.1-ms increments

« Units and/or Ports for Priority Servicing:CPU Bus Unit (by unit No.)
CS/CJ Special /0 Unit (by unit
No.)
Inner Board (CS Series only)
RS-232C port
Peripheral port

Address in Pro- Settings Default Function New set-
gramming Console ting’s effec-
Word Bit(S) tiveness
219 08to |00 00 00: Disable priority mode servicing Takes effect
15 05to FF 05 to FF: Time slice for instruction execution at the start
(Hex) (5 to 255 ms in 1-ms increments) of operation
00to |00toFF 00 00: Disable priority mode servicing ((:Cri:%:de
07 (Hex) 01 to FF: Time slice for pgripheral ;ervicing during oper-
(0.1 to 25.5 ms in 0.1-ms increments) ation.)
220 08to |00 00 00: Disable priority mode servicing
15 ;8 :0 %E 10 to 1F: CPU Bus Unit unit number + 10 (Hex)
83 o |5 ° 00 20 to 7F: CS/CJ Special /0 Unit unit number + 20 (Hex)
FC E1: Inner Board
221 22 © |FD(Hex) |90 FC: RS-232C port
0010 00 FD: Peripheral port
07
222 08 to 00
15
 Operation and errors will be as shown below depending on the settings in
the PLC Setup.
» The setting cannot be made from the CX-Programmer for CS1 or CJ1
CPU Units. The setting can be made from CX-Programmer Ver. 2.1 or
later for CS1-H and CJ1-H CPU Units.
Conditions CPU Unit operation PLC Setup errors
Time Slice for Time Slice for Specified Units
Peripheral Instruction and Ports
Servicing Execution
OltoFF: (0.1to 05to FF: (5to All correct settings | Peripheral Servicing Priority | None
25.5 ms) 255 ms) 00 and correct set- | Mode
tings
Correct, but redun-
dant settings
Some illegal set- | Peripheral Servicing Priority | Generated
tings Mode for items with correct
settings
All 00 settings Normal operation Generated
00 and illegal set-
tings
All illegal settings
00 00 Normal operation None
Any other Normal operation Generated

310



Peripheral Servicing Priority Mode

Section 6-9

Auxiliary Area Information

Note If an error is detected in the PLC Setup, A40210 will turn ON and a non-fatal
error will occur.

If the slice times are set for program execution and peripheral servicing, the

total of all the program execution and peripheral servicing slice times will be
stored in A266 and A267. This information can be used as a reference in
making appropriate adjustments to the slice times.

When Peripheral Servicing Priority Mode is not being used, the program exe-
cution time will be stored. This value can be used in determining appropriate

settings for the slice times.

Words

Contents

Meaning

Refreshing

A266 and A267

00000000 to
FFFFFFFF Hex
(0 to 4294967295
decimal)

Total of all slice times for program execution
and all slice times for peripheral servicing.

0.0 to 429,496,729.5 ms (0.1-ms increments)

The contents is
refreshed each cycle
and is cleared at the
beginning of opera-

) tion.
Value is stored
A267 A266 as 32-bit binary
(Most-signifi- | (Least-signifi- (8-digit hexadeci-
cant bytes) cant bytes) mal) value

6-9-2 Temporarily Disabling Priority Mode Servicing

WOOJOIOO

Data concurrence is not guaranteed at the following times if Peripheral Servic-
ing Priority Mode is used.

» When more than one word is read from a peripheral device using a com-
munications command. The data may be read during different peripheral
servicing time slices, causing the data to not be concurrent.

* When instructions with long execution times are used in the program,
e.g., when transferring large quantities of /O memory data. The transfer
operation may be interrupted for peripheral servicing, causing the data to
not be concurrent. This can be true when words being written by the pro-
gram are read from a peripheral before the write has been completed or
when words being read by the program are written from a peripheral
before the read has been completed.

* When two instructions access the same words in memory. If these words
are written from a peripheral device between the times the two instruc-
tions are executed, the two instructions will read different values from
memory.

When data concurrence must be ensured, the DISABLE INTERRUPTS and
ENABLE INTERRUPTS instructions (DI(693) and EI(694)) can be used for
CS1 or CJ1 CPU Units to prevent priority servicing during required sections of
the program, as shown in the following example. For CS1-H, CJ1-H, or CJ1M
CPU Units, the DISABLE PERIPHERAL SERVICING and ENABLE PERIPH-
ERAL SERVICING instructions (IOSP(287) and IORS(288)) can be used

|

DI (693)

Priority servicing will not be executed between DI(693) and
EI(694) while W000000 is ON.

El (694)

311



Peripheral Servicing Priority Mode

Section 6-9

Operation

Time slice for
program execution
i

Time slice for Time slice for

‘peripheral servicing program execu‘tion

- mm - - ———— - - - .- - >
l Peripheral i Peripheral Normal peripheral
' servicing ! servicing servicing
i L M l b \i |
Execution Interrupted Execution Interrupted Execution ‘ | ‘ ! ‘

Note 1.

1/0 refresh

Program section
requiring data
concurrence

!

DI(693) executed. EI(694) executed.

DI(693) and I0OSP(287) will disable not only interrupts for priority servicing,
but also all other interrupts, including 1/O, scheduled, and external inter-
rupts. All interrupts that have been generated will be executed after the cy-
clic task has been executed (after END(001) execution) unless CLI(691) is
executed first to clear the interrupts.

2. Disabling interrupts with DI(693) or IOSP(287) is effective until EI(694) or
IORS(288) is executed, until END(001) is executed, or until PLC operation
is stopped. Program sections can thus not be created that go past the end
of a task or cycle. Use DI(693) and EI(694) or IOSP(287) and IORS(288)
in each cyclic task when necessary to disable interrupts in more than one
cycle or task.

CS1 and CJ1 CPU Units

DI(693)

EI(694)

312

When executed, DI(693) disables all interrupts (except for interrupts for the
power interrupt task), including interrupts for priority servicing, I/O interrupts,
scheduled interrupts, and external interrupts. Interrupts will remain disabled if
DI(693) is executed when they are already disabled.

Symbol

(@)DI(693)

Applicable Program Areas

Area Applicability

Block programming areas Yes

Step programming areas Yes

Subroutine programs Yes

Interrupt tasks No

Condition Flags

Flag Label Operation
Error Flag ER Turns ON if DI(693) is executed in an interrupt task, and
OFF otherwise

When executed, EI(694) enables all interrupts (except for interrupts for the
power interrupt task), including interrupts for priority servicing, I/O interrupts,
scheduled interrupts, and external interrupts. Interrupts will remain enabled if
EI(694) is executed when they are already enabled.

Symbol

EI(694) requires no execution condition.



Peripheral Servicing_j Priority Mode Section 6-9

Applicable Program Areas

Area Applicability
Block programming areas Yes
Step programming areas Yes
Subroutine programs Yes
Interrupt tasks No

Condition Flags

Flag Label Operation

Error Flag ER Turns ON if EI(694) is executed in an interrupt task.

CS1-H, CJ1-H, and CJ1M CPU Units

IOSP(287)

IORS(288)

When executed, IOSP(287) disables peripheral servicing. Peripheral servic-
ing will remain disabled if IOSP(287) is executed when it is already disabled.

Symbol

Applicable Program Areas

Area Applicability

Block programming areas Yes

Step programming areas Yes

Subroutine programs Yes

Interrupt tasks No

Condition Flags

Flag Label Operation
Error Flag ER Turns ON if IOSP(287) is executed in an interrupt task,
and OFF otherwise

When executed, IORS(288) enables disables peripheral servicing that was
disabled with 10SP(287). Peripheral servicing will remain enabled if
IORS(288) is executed when it is already enabled.

Symbol

IORS

Applicable Program Areas

Area Applicability
Block programming areas Yes
Step programming areas Yes
Subroutine programs Yes
Interrupt tasks No

Condition Flags

Flag Label Operation
Error Flag ER Turns ON if IORS(288) is executed in an interrupt task.

313



Battery-free Operation

Section 6-10

6-10 Battery-free Operation

The CS-series and CJ-series PLCs can be operated without a Battery
installed (or with an exhausted Battery). The procedure used for battery-free
operation depends on the following items.

» CPU Unit

» Whether or not I/O memory (e.g., CIO Area) is maintained or not

» Whether or not the DM and EM Areas are initialized at startup

» Whether or not the DM and EM Areas are initialized from the user pro-

gram
The above differences are summarized in the following table.

CPU Unit

Not maintaining /0O memory Maintaining I/O memory

No initializing DM and
EM Areas at startup

Initializing DM and EM Areas at startup

From user program | Not from user program

Use normal operation (using flash memory) ora | Use automatic transfer | Not possible with any method.

from a Memory Card at | A Battery must be installed.
startup. (Turn ON pin 2
of DIP switch.)

CS1-H,

CJ1-H, Memory Card.

CJ1IM, or

CS1D

CS1 or CJ1 | Use automatic transfer from a Memory Card at

startup. (Turn ON pin 2 of DIP switch.)

314

Note 1.

When using battery-free operation, disable detecting a low battery voltage
in the PLC Setup regardless of the method used for battery-free operation.

If a Battery is not connected or the Battery is exhausted, the following re-
strictions will apply to CPU Unit operation. This is true regardless of the
CPU Unit being used.

The status of the Output OFF Bit (A50015) will be unreliable. When the
Output OFF Bit is ON, all Output Unit outputs will be turned OFF.
Include the following instructions in the ladder program to prevent all
Output Unit from outputs turning OFF when the power is turned ON.

First Cycle Flag
(A20011)

| [ RSET ]
—* [ A50015

The contents of I/O memory (including the HR, DM, and EM Areas)
may not be correctly maintained. Therefore, set the PLC Setup so that
the status of the I/O Memory Hold Flag (A50012) and the Forced Sta-
tus Hold Flag (A50013) are not maintained when power is turned ON.

The clock function cannot be used. The clock data in A351 to A354
and the startup time in A510 and A511 will not be dependable. The
files dates on files written to the Memory Card from the CPU Unit will
also not be dependable.

The following data will be all-zeros at startup: Power ON Time (A523),
Power Interruption Time (A512 and A513), and Number of Power In-
terruptions (A514).

The Error Log Area in A100 to A199 will not be maintained.
The current EM bank will always be 0 at startup.

There will be no files left in the EM file memory at startup and the file
memory functions cannot be used. The EM file memory must be reset
in the PLC Setup and the EM file memory must be reformatted to use
it.




Battery-free Operation

Section 6-10

CS1-H, CJ1-H, CJIM, or CS1D CPU Units

CJ1 and CJ1 CPU Units

Procedure

Battery-free operation is possible for CS1-H, CJ1-H, CJ1M, or CS1D CPU
Units with normal operation. The user program and parameter data are auto-
matically backed up to flash memory in the CPU Unit and are automatically
restored from flash memory at startup. In this case, the I/O memory will not be
maintained and the DM and EM Areas must be initialized from the user pro-
gram.

Battery-free operation is also possible for the CS1-H, CJ1-H, CJ1M, or CS1D
CPU Units by automatically transferring data from a Memory Card at startup,
just as it is for the CS1 CPU Units. (With a Memory Card, the DM and EM
Area data can be included.)

Battery-free operation is possible for the CS1 and CJ1 CPU Units by automat-
ically transferring data from a Memory Card at startup. In this case, the I/O
memory will not be maintained. (With a Memory Card, the DM and EM Area
data can be included.)

The following flowcharts show the procedures for the two types of CPU Unit.

CS1-H, CJ1-H, CJ1IM, or CS1D CPU Units

Power ON

Operation with a Battery

previous |
data at

Maintain

startup?

Use normal operation. No
Memory Card is required.
PLC Setup: Disable detection a
low battery voltage and set I/O
Memory Hold Bit status to be
maintained at when power is
turned ON.

<

/0

CIOMWRITIM
Required data? CNT/HRIDM/EM

CNT/HR/DM/EM

No

Use normal operation. No
Memory Card is required.

PLC Setup: Enable detection a
low battery voltage.

Battery-free Operation

nitialize 1/0 No
memory before

memory from the
program?

nitialize only DM

Use normal operation. No Memory
Card is required. User program and
parameter data backed up in flash
memory.

PLC Setup: Disable detection a low
battery voltage.

Yes, initialize /0O memory
from the program.

Automatically transfer data from a
Memory Card at startup.

Area words allocated

to CPU Bus Units
and Inner Boards
(D20000 to
32767)2

No Initialize all of the DM and EM Areas
starting from D0O0000.

Required files: AUTOEXEC.OBJ,
AUTOEXEC.STD, and
AUTOEXEC.IOM

PLC Setup: Disable detection a low
battery voltage.

Other.

Automatically transfer data from a
Memory Card at startup.

Required files: AUTOEXEC.OBJ,
AUTOEXEC.STD,AUTOEXEC.IOM,
etc.

PLC Setup: Disable detection a low
battery voltage.

Battery-free operation not necessary.

315



Other Functions

Section 6-11

CS1 and CJ1 CPU Units

Power ON

Operation with a Battery

Maintain previous
1/O data at
startup?

No

Yes

CIO/WRITIM
CNT/HR/DM/EM

Required data?

NT/HR/DM/EM

Use normal operation. No
Memory Card is required.

PLC Setup: Disable detection a
low battery voltage and set I/O
Memory Hold Bit status to be
maintained at when power is
turned ON.

Use normal operation. No
Memory Card is required.

PLC Setup: Enable detection a
low battery voltage.

Battery-free Operation

Initialize only DM Area
words allocated to CPU
Bus Units and Inner
Boards (D20000 to
D32767)?

No

Initialize all of the DM and EM Areas

starting from D0O000O.

Automatically transfer data from a
Memory Card at startup.

Required files: AUTOEXEC.OBJ,
AUTOEXEC.STD, and
AUTOEXEC.IOM

PLC Setup: Disable detection a low
battery voltage.

Other.

Automatically transfer data from a
Memory Card at startup.

Required files: AUTOEXEC.OBJ,
AUTOEXEC.STD,
AUTOEXEC.IOM, etc.

PLC Setup: Disable detection a low
battery voltage.

Battery-free operation not necessary.

6-11 Other Functions

6-11-1 1/O Response Time Settings

CS1 Basic
I/0 Unit

CPU Unit

316

The input response times for CS/CJ Basic 1/0 Units can be set by Rack and
Slot number. Increasing the input response time reduces the effects of chat-
tering and noise. Decreasing the input response time (but keeping the pulse
width longer than the cycle time) allows reception of shorter input pulses.

Note With CS-series CPU Units, pulses shorter than the cycle time can be input
with the high-speed inputs available in some C200H High-density I/O Units or
with a High-speed Input Unit. Refer to 6-1-4 High-speed Inputs for details.

Input response time

II/O refreshing

CS1 Basic
1/0O Unit

CPU Unit

Input response time

\ Pulses shorter than the input
: response time are not received.

I/O refreshing




Other Functions

Section 6-11

PLC Setup

The input response times for the 80 slots in a CS/CJ PLC (Rack O Slot 0
through Rack 7 slot 9) can be set in the 80 bytes in addresses 10 through 49.

Programming Name Setting (Hex) Default (Hex)
Console
address
10 CS/CJ Basic I/0O Unit 00: 8 ms 00 (8 ms)
Bits 0 to 7 Input Response Time for 10: 0 ms
Rack 0, Slot 0 11: 0.5 ms
12: 1 ms
13:2ms
14: 4 ms
15: 8 ms
16: 16 ms
17:32 ms
49 CS/CJ Basic I/0 Unit Same as above. |00 (8 ms)
Bits 8 to 15 Input Response Time for
Rack 7, Slot 9

6-11-2 1/O Area Allocation

A Programming Device can be used to set the first word for I/O allocation in
Expansion Racks (CS/CJ Expansion Racks and C200H Expansion I/O
Racks). This function allows each Rack’s 1/O allocation area to be fixed within
the range CIO 0000 to CIO 0999. (The first words are allocated by rack num-

ber.)

317



Other Functions Section 6-11

318



SECTION 7
Program Transfer, Trial Operation, and Debugging

This section describes the processes used to transfer the program to the CPU Unit and the functions that can be used to test

and debug the program.
7-1  Program Transfer. . ..o e
7-2 Trial Operation and Debugging. . . .. ..o oot e i
7-2-1  Forced SEl/RESEL. . . ..ot
7-2-2  Differential Monitoring. .. ......... ..
7-2-3  OnlineEditing. . ......oiii i
7-2-4  TracingData. . .......... ..

320
320
320
321
322
325

319



Prog_;ram Transfer

Section 7-1

7-1

Program Transfer

A Programming Device is used to transfer the programs, PLC Setup, I/O
memory data, and 1/0O comments to the CPU Unit with the CPU Unit in PRO-
GRAM mode.

Program Transfer Procedure for CX-Programmer

1,23..

1. Select PLC, Transfer, and then To PLC. The Download Options Dialog
Box will be displayed.

2. Specify the items for the transfer from among the following: Programs, Set-
tings (PLC Setup), I/O table, Symbols, Comments, and Program index.

Note The I/O table and Comments can be selected only if they exist on the
Memory Card in the CPU Unit.

3. Click the OK button.
The program can be transferred using either of the following methods.
» Automatic transfer when the power is turned ON

When the power is turned ON, the AUTOEXEC.OBJ file in the Memory Card
will be read to the CPU Unit (pin 2 on the DIP switch must be ON).

» Program replacement during operation
The existing program file can be replaced with the program file specified in the
Auxiliary Area by turning ON the Replacement Start Bit in the Auxiliary Area

(A65015) from the program while the CPU Unit is in operation. Refer to SEC-
TION 5 File Memory Functions for details.

7-2 Trial Operation and Debugging
Forced Set/Reset

7-2-1

320

Note

A Programming Device can force-set (ON) or reset (OFF) specified bits (CIO
Area, Auxiliary Area, HR Area, and timer/counter Completion Flags). Forced
status will take priority over status output from the program or I/O refreshing.
This status cannot be overwritten by instructions, and will be stored regard-
less of the status of the program or external inputs until it is cleared from a
Programming Device.

Force-set/reset operations are used to force input and output during a trial
operation or to force certain conditions during debugging.

Force-set/reset operations can be executed in either MONITOR or PRO-
GRAM modes, but not in RUN mode.

Turn ON the Forced Status Hold Bit (A50013) and the IOM Hold Bit (A50012)
at the same time to retain the status of bits that have been force-set or reset
when switching the operating mode.

Turn ON the Forced Status Hold Bit (A50013) and the IOM Hold Bit (A50012),
and set the Forced Status Hold Bit at Startup setting PLC Setup to retain the
status of the Forced Status Hold Bit hold to retain the status of bits that have
been force-set or reset when turning OFF the power.



Trial Operation and Debugging Section 7-2

Output Unit CPU Unit
Forced ON regardless ¢~ Eg{ced
of programming g
o
S
. Forced o
Input ignored set

The following areas can be force-set and reset.

CIO (I/O bits, data link bits, CPU Bus Unit bits, Special 1/0O Unit bits, Inner
Board bits, SYSMAC BUS bits, Optical I/O Unit bits, work bits), WR Area,
Timer Completion Flags, HR Area, Counter Completion Flags. (The Inner
Board, SYSMAC BUS, and I/O Terminal Areas are supported by the CS-
series CPU Units only.)

Programming Device Operation

* Select bits for forced setting/resetting.
* Select forced set or forced reset.
» Clear forced status (including clearing all forced status at the same time).

7-2-2 Differential Monitoring

When the CPU Unit detects that a bit set by a Programming Device has
changed from OFF to ON or from ON to OFF, the results are indicated in the a
Differentiate Monitor Completed Flag (A50809). The Flag will turn ON when
conditions set for the differential monitor have been met. A Programming
Device can monitor and display these results on screen.

Programming Device

Detects bit A

OFF to ON
transition.
CPU Unit
I/O memory
Bit A
Moni-
tored
4 for OFF
to ON
transi-
tion.

Programming Device Operation for CX-Programmer

1,2,3..

1. Right-click the bit for differential monitoring.

2. Click Differential Monitor from the PLC Menu. The Differential Monitor Di-
alog Box will be displayed.

3. Click Rising or Falling.

4. Click the Start button. The buzzer will sound when the specified change is
detected and the count will be incremented.

5. Click the Stop button. Differential monitoring will stop.

321



Trial Operation and Debugging Section 7-2

Related Auxiliary Bits/Words

Name

Address Description

Differentiate Monitor
Completed Flag

A50809

Turns ON when the differential monitoring condition has been met dur-
ing differential monitoring.

Note: The flag will be cleared when differential monitoring is started.

7-2-3 Online Editing

322

The Online Editing function is used to add to or change part of a program in a
CPU Unit directly from the Programming Devices when the CPU Unit is in
MONITOR or PROGRAM mode. Additions or changes are made one instruc-
tion at a time for the Programming Console and one or more program sections
at a time from the CX-Programmer. The function is thus designed for minor
program changes without stopping the CPU Unit.

Online editing is possible simultaneously from more than one computer run-
ning the CX-Programmer as well as from a Programming Console as long as
different tasks are edited.

Online Editing

Programming Device

1

Operating in Program section changed

MONITOR mode.

The cycle time will be increased by from one to several cycle times if the pro-
gram in the CPU Unit is edited online in MONITOR mode.

The cycle time for CS1-H, CJ1-H, CJ1M, and CS1D CPU Units will also be
increased to back up data in the flash memory after online editing. The BKUP
indicator will be lit during this period. The progress of the backup is displayed
on the CX-Programmer. The increases per cycle are listed in the following
table.

CPU Unit Increase in cycle time
Online editing Backup to flash memory

CS1 CPU Units pre-EV1 90 ms max. Not supported.
CS1 CPU Units EV1 or later |12 ms max.
CS1-H CPU Units 4% or cycle time
CS1D CPU Units
CS1 CPU Units Not supported.
CJ1-H CPU Units 4% or cycle time
CJ1M CPU Units

With a CS1-H, CJ1-H, CJ1M, or CS1D CPU Unit, there is a limit to the num-
ber of edits that can be made consecutively. The actual number depends on
the type of editing that is performed, but the following can be used as guide-
lines.



Trial Operation and Debugging Section 7-2

Task Size and Cycle Time
Extension

Precautions

Note

CJ1IM-CPULILL 40 edits
CS1G-CPULIJH/CI1G-CPULILIH: 160 edits
CS1H-CPULILIH/CJ1H-CPULLIH/CS1D-CPULILIH: 400 edits

A message will be displayed on the CX-Programmer or Programming Console
if the limit is exceeded, and further editing will not be possible until the CPU
Unit has completed backing up the data.

The relation to the size of the task being edited to cycle time extension is as
follows:

When using a version 1 or later CS1 CPU Unit, CS1-H CPU Unit, CS1D CPU
Unit, CJ1 CPU Unit, or CJ1M CPU Unit, the length of time that the cycle time
is extended due to online editing is almost unaffected by the size of the task
(program) being edited.

When using a pre-EV1 CS1 CPU Unit, the size of the task that is being edited
will determine the length of time that a program will be stopped for online edit-
ing. By splitting the program into smaller tasks, the amount of time that the
cycle is extended will be shorter using the Online Editing function than with
previous PLC models.

The cycle time will be longer than normal when a program is overwritten using
Online Editing in MONITOR mode, so make sure that the amount of time that
it is extended will not exceed the cycle monitoring time set in the PLC Setup. If
it does exceed the monitoring time, then a Cycle Time Over error will occur,
and the CPU Unit will stop. Restart the CPU Unit by selecting PROGRAM
mode first before changing to RUN or MONITOR mode.

If the task being edited online contains a block program, then previous exe-
cute data such as Standby (WAIT) or Pause status will be cleared by online
editing, and the next execution will be from the beginning.

Online Editing from CX-Programmer

1,2,3...

& Caution

1. Display the program section that will be edited.
Select the instructions to be edited.

Select Program, Online Edit, and then Begin.
Edit the instructions.

Select Program, Online Edit, and then Send Changes The instructions
will be check and, if there are no errors, they will be transferred to the CPU
Unit. The instructions in the CPU Unit will be overwritten and cycle time will
be increased at this time.

a M wDn

Proceed with Online Editing only after verifying that the extended cycle time
will not affect operation. Input signals may not be input if the cycle time is too
long.

Temporarily Disabling Online Editing

It is possible to disable online editing for a cycle to ensure response charac-
teristics for machine control in that cycle. Online editing from the Program-
ming Device will be disabled for one cycle and any requests for online editing
received during that cycle will be held until the next cycle.

Online editing is disabled by turning ON the Online Editing Disable Bit
(A52709) and setting the Online Editing Disable Bit Validator (A52700 to
A52707) to 5A. When these settings have been made and a request for online
editing is received, online editing will be put on standby and the Online Editing
Wait Flag (A20110) will be turned ON.

323



Trial Operation and Debugging Section 7-2

1,2,3...

Related Auxiliary Bits/Words

When the Online Editing Disable Bit (A52709) is turned OFF, online editing
will be performed, the Online Editing Processing Flag (A20111) will turn ON,
and the Online Editing Wait Flag (A20110) will turn OFF. When online editing
has been completed, the Online Editing Processing Flag (A20111) will turn
OFF.

Online editing can also be temporarily disabled by turning ON the Online Edit-
ing Disable Bit (A52709) while online editing is being performed. Here too, the
Online Editing Wait Flag (A20110) will turn ON.

If a second request for online editing is received while the first request is on
standby, the second request will not be recorded and an error will occur.

Online editing can also be disabled to prevent accidental online editing. As
described above, disable online editing by turning ON the Online Editing Dis-
able Bit (A52709) and setting the Online Editing Disable Bit Validator (A52700
to A52707) to 5A.

Enabling Online Editing from a Programming Device
When online editing cannot be enabled from the program, it can be enabled
from the CX-Programmer.

1. Performing Online Editing with a Programming Console
If online editing is executed from a Programming Console and the online
editing standby status cannot be cleared, the Programming Console will be
locked out and Programming Console operations will not be possible.
In this case, connect the CX-Programmer to another serial port and turn
OFF the Online Edit Disable Bit (A52709). The online editing will be pro-
cessed and Programming Console operations will be possible again.

2. Performing Online Editing with the CX-Programmer
If operations continue with online editing in standby status, CX-Program-

mer may go offline. If this occurs, reconnect the computer to the PLC and
turn OFF the Online Edit Disable Bit (A52709).

Name

Address Description

Online Edit Disable Bit Validator

A52700 to | Validates the Online Edit Disable Bit (A52709).

AS2707 | Not 5A: Online Edit Disable Bit invalid
5A: Online Edit Disable Bit valid

Online Edit Disable Bit

A52709 To disable online editing, turn this bit ON and set the Online Edit Disable
Bit Validator (A52700 to A52707) to 5A.

Online Editing Wait Flag

A20110 ON when an online editing process is on standby because online editing
is disabled.

Online Editing Processing Flag

A20111 ON when an online editing process is being executed.

Turning OFF Outputs

324

If the Output OFF Bit (A50015) is turned ON through the OUT instruction or
from a Programming Device, all outputs from all Output Units will be turned
OFF (this applies to the built-in general-purpose or pulse outputs on CJ1M
CPU Units as well), and the INH indicator on the front of the CPU Unit will turn
ON.

The status of the Output OFF Bit is maintained even if power is turned OFF
and ON.



Trial Operation and Debugging Section 7-2

7-2-4  Tracing Data

Basic Procedure

1,23..

Note

Note

Output Unit CPU Unit

All OFF
Output OFF Bit: ON
X
X

&
A

The Data Trace function samples specified /O memory data using any one of
the following timing methods, and it stores the sampled data in Trace Memory,
where they can be read and checked later from a Programming Device.

* Specified sampling time (10 to 2,550 ms in 10-ms units)
» One sample per cycle
* When the TRACE MEMORY SAMPLING instruction (TRSM) is executed

Up to 31 bits and 6 words in I/O memory can be specified for sampling. Trace
Memory capacity is 4,000 words.

1. Sampling will start when the parameters have been set from the CX-Pro-
grammer and the command to start tracing has been executed.

2. Sampled data (after step 1 above) will be traced when the trace trigger
condition is met, and the data just after the delay (see note 1) will be stored
in Trace Memory.

3. Trace Memory data will be sampled, and the trace ended.
Delay value: Specifies how many sampling periods to offset the sampling in

Trace Memory from when the Trace Start Bit (A50814) turns ON. The setting
ranges are shown in the following table.

No. of words Setting range
sampled

—1999 to 2000
—1332 to 1333
—999 to 1000
—799 to 800
—665 to 666
-570to 571
—499 to 500

OO~ |W[IN|FL|O

Positive delay: Store data delayed by the set delay.

Negative delay: Store previous data according go to the set delay.

Example: Sampling at 10 ms with a —30 ms delay time yields —30 x 10 = 300
ms, so data 300 ms before the trigger will be stored.

Use a Programming Device to turn ON the Sampling Start Bit (A50815).Never
turn ON this bit from the user program.

325



Trial Operation and Debugging

Section 7-2

Scheduled Data Trace

One-cycle Data Trace

Data Trace via TRSM

Data Trace Procedure

1,23..

326

Sampling Start Bit

o J

Trace Start Bit

Trace Trigger Monitor Flag

Trace Busy Flag

Trace Completed Flag

PEEEEEET T

The following traces can be executed.

Sampling

A scheduled data trace will sample data at fixed intervals. Specified sampling
times are 10 to 2,550 ms in 10-ms units. Do not use the TRSM instruction in
the user program and be sure to set the sampling period higher than 0.

A one-cycle data trace will sample 1/O refresh data after the end of the tasks
in the full cycle. Do not use the TRSM instruction in the user program and be
sure to set the sampling period higher than 0.

A sample will be taken once when the TRACE MEMORY SAMPLING instruc-
tion (TRSM) instruction is executed. When more than one TRSM instruction is
used in the program, a sample will be taken each time the TRSM instruction is
executed after the trace trigger condition has been met.

Use the following procedure to execute a trace.

1. Usethe CX-Programmer to set trace parameters (Execute PLC/Data Trace
and set under Execute/Set.): Address of the sampled data, sampling peri-
od, delay time, and trigger conditions.

2. Use CX-Programmer to start sampling or turn ON the Sampling Start Bit
(A50815).

3. Put the trace trigger condition into effect.

4. End tracing.

5. Use CX-Programmer to read the trace data.
a) Select Data Trace from the PLC Menu.
b) Select Select from the Execution Menu.
c) Select Execute from the Execution Menu.
d) Select Read from the Execution Menu.



Trial Operation and Debugging

Section 7-2

Related Auxiliary Bits/Words

Name

Address

Description

Sampling Start Bit

A50815

Use a Programming Device to turn ON this bit to start sampling. This bit
must be turned ON from a Programming Device.

Do not turn this bit ON and OFF from the user program.
Note: The bit will be cleared when the Data Trace has been completed.

Trace Start Bit

A50814

When this bit is turned ON, the trace trigger will be monitored and sam-
pled data will be stored in Trace Memory when the trigger condition is
met. The following traces are enabled with this bit.

1) Scheduled trace (trace at fixed intervals of 10 to 2,550 ms)
2) TRSM instruction trace (trace when the TRSM executes)
3) One-cycle trace (trace at the end of execution of all cyclic tasks)

Trace Trigger Monitor
Flag

A50811

This flag turns ON when the trace trigger condition has been met after
the Trace Start Bit has turned ON. This flag will turn OFF when the
sampling is started again by turning ON the Sampling Start Bit.

Trace Busy Flag

A50813

This flag turns ON when sampling is started by a Sampling Start Bit
and turns OFF when the trace has been completed.

Trace Completed Flag

A50812

This flag turns ON if Trace Memory becomes full after the trace trigger
condition has been met during a trace operation and turns OFF when
the next sampling operation is started.

327






Appendix A

PLC Comparison Charts:

CJ-series, CS-series, C200HG/HE/HX,
CQOM1H, CVM1, and CV-series PLCs

Functional Comparison

Item CJ Series CS Series C200HX/HG/ CvM1l/CV CQM1H
HE Series
Basic features Ca- No. of I/O 2,560 points 5,120 points 1,184 points 6,144 points 512 points
pacity | points
Program 120 Ksteps 250 Ksteps 2 Kwords 62 Kwords 15.2 Kwords
capacity One step is basically | One step is basi- | (63.2 Kwords
equivalent to one cally equivalent | for -Z)
word. Refer to the end | to one word.
of 10-5 Instruction Refer to the end
Execution Times and | of 10-5 Instruc-
Number of Steps in tion Execution
the Operation Manual | Times and Num-
for details. ber of Steps in
the Operation
Manual for
details.
Max. data 32 Kwords 32 Kwords 6 Kwords 24 Kwords 6 Kwords
memory
1/0 bits 160 words (2,560 bits) | 320 words 40 words 128 words 32 words
(5,120 bits) (640 bits) (2,048 bits) (512 bits)
Work bits 2,644 words 2,644 words 408 words 168 words 158 words
(42,304 bits) + WR: (42,304 bits) + (6,528 bits) (2,688 bits) (2,528 bits)
512 words (8,192 bits) | WR: 512 words +400 words
= 3,156 words (8,192 bits) = (6,400 bits)
(50,496 bits) 3,156 words
(50,496 bits)
Holding bits | 512 words (8,192 bits) | 512 words 100 words 300 words 100 words
(8,192 bits) (1,600 bits) (4,800 bits) (1,600 bits)
Max.: 1,
400 words (2,
400 bits)
Max. 32 Kwords x 7 banks | 32 Kwords x 6 Kwords x 3 32 Kwords x 8 | 6 Kwords
extended 13 banks banks (6 banks
data mem- Kwords x (Optional)
ory 16 banks for -Z)
Max. No. 4,096 each 4,096 each Timers/ 1,024 points Timers/
timers/ counters com- counters com-
counters bined: 512 bined: 512
Pro- Basic CJ1: 0.08 ps min. CS1: 0.104 ps min. 0.125 ps min. | 0.375 ps min.
cess- |instructions |cJ1-H: 0.02 ps min. 0.04 ps min.
ing | (LD) CJIM: 0.1 ps min CS1-H:
speed s ' 0.02 ps min.
Special CJ1: 0.25 ps min. CS1: 0.417 ps min. 4.3 pys min. 17.7 ps
instructions | cJ1-H: 0.18 ps min. 0.25 ps min.
(MOV) CJIM: 03 psmin, | CSL-H:
0.18 ps min.
System CJ1: 0.5 ms min. CS1: 0.7 ms 0.5ms 0.7 ms
overhead CJ1-H: 0.3 ms min. in | 0.5 ms min.
time normal mode, 0.2 ms | CS1-H: 0.3 ms
in a parallel process- | min. in normal
ing mode mode, 0.2 ms in
CJ1M: 0.5 ms min. a parallel pro-
cessing mode
Delay during | CJ1: Approx. 12 ms CS1: 80 ms (160 ms | 500 ms Typically
Online Edit [ cJ1-H: Approx. 11 ms | Approx. 12 ms for -Z) 250 ms
(write) for CPU4L] and CS1-H: Approx.

8 ms for CPU6

CJ1IM:
Approx. 14 ms

11 ms for CPU4L]
and
8 ms for CPU6

329




PLC Comparison Charts Appendix A
Item CJ Series CS Series C200HX/HG/ CvM1l/cV CQM1H
HE Series
Structure Screw mounting No Yes Yes Yes No
DIN Track mounting | Yes Yes Yes No Yes
Backplanes No Yes Yes Yes No
Size (H x D, mm) 90 x 65 130 x 123 130 x 118 250 x 100 110 x 107
Number of 1/0 Units 40 Units 89 Units (Includ- | 10 or 16 Units | 64 Units 16 Units
Units/Racks ing Slave Racks) (8 Racks x 8
Units)
CPU Bus Units 16 Units 16 Units None 16 Units None
Expansion I/O Racks |3 Racks 7 Racks 3 Racks 7 Racks 1 Rack
Task function Yes Yes No No No
CPU process- Normal Mode Yes Yes - -
ing mode (pro- - —
grgm exec(LE)tion Ee_npl;leﬁl gerwcmg Yes Yes - -
and peripheral riority Mode
servicing) Parallel Processing CJ1: No CS1: No No No No
with Synchronous CS1-H: Yes CS1-H: Yes
Memory Access CJIM: No
Parallel Processing CS1: No CS1: No No No No
with Asynchronous [ cJ1-H: Yes CS1-H: Yes
Memory Access CJ1IM: No
1/0 refresh for- | Cyclic refreshing Yes Yes Yes Yes Yes
mat Scheduled refreshing | No No No Yes No
Zero-cross refreshing | No No No Yes No
Immediate refreshing | Yes Yes No Yes No
Immediate refresh- Yes Yes Yes Yes Yes
ing using IORF
instruction
Clock function Yes Yes Yes Yes Yes (Memory
Cassette
required)
RUN output Yes (Depending on Yes (Depending | Yes (Depend- Yes No
Power Supply Unit) on Power Supply |ing on Power
Unit) Supply Unit)
Startup Mode (for default PLC Setup RUN mode CS1: PRO- RUN mode RUN mode PROGRAM
setting when no Programming Console GRAM mode mode
is connected) CS1-H: RUN
mode
Disabling Power Interrupt Processing CJ1: No CS1: No No No No
CJ1-H: Yes CS1-H: Yes
CJ1M: Yes
Battery-free operation CJ1: CS1: Memory Card Memory Card | Memory Cas-
Memory Card Memory Card sette
CJ1-H: CS1-H:
Memory Card or flash | Memory Card or
memory flash memory
CJ1M: Memory Card
or flash memory
Automatic backup to flash memory CJ1: No CS1: No No No No
CJ1-H: Yes CS1-H: Yes
CJ1M: Yes
Restart continuation No No No Yes No

330



PLC Comparison Charts

Appendix A

Item CJ Series CS Series C200HX/HG/ CvM1l/cvV CQM1H
HE Series
External mem- | Medium Memory card Memory card Memory cas- Memory card Memory cas-
ory (Flash ROM) (Flash ROM) sette (RAM, sette (ROM,
(EEPROM, EEPROM, EEPROM,
EPROM) EPROM) EPROM)
Capacity 48 Mbytes 48 Mbytes 410 32 Kwords |32 to 512 4 to 16 Kwords
(4 to 64 Kwords | Kwords (RAM:
for -Z) 64 to
512 Kbytes,
EEPROM: 64
to 128 Kbytes,
EPROM: 0.5to0
1 Mbytes
Contents Programs, 1/0 mem- | Programs, /O Programs, I1/0 | Programs, /0O | Programs,
ory, parameters memory, parame- | memory, memory, read-only DM,
ters parameters parameters parameters
Read/write method Programming Device, | Programming Turning ON SR | Programming | Turning ON AR
user program (file Device, user pro- | bit Device, user bit
memory instructions), | gram (file mem- program (file
or Host Link ory instructions), memory
or Host Link instructions),
Host Link, or
Memory Card
Writer
File format Binary Binary Binary Binary Binary
Extended Data Mem- | Yes (except for CJ1IM | Yes No No No
ory handled as files | CPU Units)
Programs automati- | Yes Yes Yes Yes Yes
cally transferred at
startup
Inner Board No Serial Communi- | Communica- No Communica-
cations Board tions Board tions Board
Built-in serial ports Yes (RS-232C x 1) Yes (RS-232C x | Yes (RS-232Cx | Yes RS-232C | Yes (RS-232C
1) 1) or x 1)
RS-422 x 1)
Serial communi- | Pe- Peripheral Yes Yes Yes Yes Yes
cations ripher- | bus
al port Host Link Yes Yes Yes No Yes
(SYSMAC (Possible with
WAY) connection to
peripheral
interface)
No protocol | No No Yes No Yes
NT Link Yes Yes No No No
CPU Peripheral Yes Yes Yes No No
Unit | bus
g‘gl_t'm Host Link Yes Yes Yes Yes Yes
230¢ | (SYSMAC
port WAY)
No protocol | Yes Yes Yes No Yes
NT Link Yes (1:N) Yes (1:N) Yes No Yes (1:1)
Serial PLC | Yes (CJ1M only) No No No No
Links
RS- Peripheral No No Yes No No
232C | bus
TZ?/S- Host Link No Yes Yes Yes Yes
RS- (SYSMAC The WG, MP,and | The CRcom- |The WG and | The CR com-
485 on | WAY) CR commands | mand is not MP com- mand is not
Com- are not sup- supported. mands are not | supported.
muni- ported. supported.
cations | g protocol | No No Yes No Yes
Board
NT Link No Yes Yes No Yes (1:1 and
1:N)
Protocol No Yes Yes No Yes
macro
CompoWay/ | No Yes (using proto- | Yes (using pro- | No Yes (using pro-
F Master col macro) tocol macro) tocol macro)

331




PLC Comparison Charts

Appendix A

Item CJ Series CS Series C200HX/HG/ CvM1l/cV CQM1H
HE Series
Interrupts 1/O interrupts Yes (Max 2 Interrupt | Yes (Max. 4 or2 | Yes (Max. 2 Yes (Max. 4 Yes (4 built into
Input Units: 32 points, | Interrupt Input Interrupt Input | Interrupt Input | CPU Bus Unit)
plus 4 points for built- | Units: 32 points) | Units: 16 Units: 32
in /0 on CJIM CPU points) points)
Units) (CJ1 CPU Units
do not support I/0
interrupts.)
Scheduled interrupts | Yes Yes Yes Yes Yes
One-shot timer inter- [ No No No No Yes
rupts
Input interrupts in Yes (CJ1M CPU Units | No No No Yes
counter mode only)
High-speed counter | Yes (CJ1M CPU Units | No No No Yes
interrupts only)
External interrupts Yes (CJ1 CPU Units Yes No No No
do not support exter-
nal interrupts.)
From Communica- No Yes Yes No No
tions Board
Power-ON interrupt | No No No Yes No
Power-OFF interrupt | Yes Yes No Yes No
Interrupt response 0.17 ms C200H Special I/ |1 ms - Approx. 0.1 ms
time Built-in /O on CJ1M | O Unit: 1 ms
CPU Units: ).12 ms CJ-series 1/O:
0.1 ms
PLC Setup Area No user addresses No user Fixed DM Area | No user Fixed DM Area
(setting possible only | addresses (set- |allocation: DM | addresses (set- | allocation: DM
from Programming ting possible only | 6600 to ting possible 6600 to
Device, including Pro- | from Program- DM 6655, only from Pro- | DM 6655. Set-
gramming Console) ming Device, DM 6550 to gramming ting possible
including Pro- DM 6559. Device, includ- | from Program-
gramming Con- | Setting possi- ing partially ming Console.
sole) ble from Pro- from Program-
gramming ming Console)
Console.

332




PLC Comparison Charts Appendix A
Item CJ Series CS Series C200HX/HG/ CvM1l/cV CQM1H
HE Series
Initial | 1/O Input response time | Set in PLC Setup Setin PLC Setup | No No Setin PLC
set- for Basic 1/0 Unit Setup
tings Rack first addresses | Set in I/O table from Setin I/O table No Setin PLC No
Programming Device | from Program- Setup (Rack
(but order of rack ming Device (but No. order can
numbers is fixed). order of rack be set.)
numbers is fixed).
First address of SYS- | No No No Setin PLC No
MAC BUS Optical I/0 Setup
Units by Master
Operation for 1/0 ver- | No No No Setin PLC No
ification error Setup
Mem- | User memory protec- | Set on DIP switch Set on DIP switch | Set on DIP Determined by | Set on DIP
ory tion switch key switch set- | switch
ting
Holding areas No No No Setin PLC No
Setup
Holding I/0 words for | No No No Setin PLC No
fatal errors (except Setup
power failure)
Memory saved using | Set in PLC Setup Setin PLC Setup | Setin PLC Setin PLC Setin PLC
I0M Hold Bit when Setup Setup Setup
power to PLC is
turned ON
Memory saved using | Set in PLC Setup Setin PLC Setup | Setin PLC Setin PLC Setin PLC
Forced Status Hold Setup Setup Setup
Bit when power to
PLC is turned ON
DIP switch status Yes Yes Yes No Yes
monitoring
Instruc- | Setting indirect DM Direct input possible Direct input pos- | No Setin PLC No
tions data to BCD or sible Setup
binary
Multiple use of Multiple use already | Multiple use No Setin PLC No
JMP(0) instruction possible already possible Setup
Operation for instruc- | Set in PLC Setup Set in PLC Setup | No No No
tion errors (Continue
or stop)
Background execu- CJ1: No CS1: No No No No
tion CJ1-H: Yes CS1-H: Yes
CJ1M: Yes
File Automatic transfer at | Determined by DIP Determined by Determined by | Setin PLC Determined by
mem- | startup switch setting (Auto- | DIP switch set- DIP switch set- | Setup or DIP DIP switch set-
ory matically read from ting (Automati- ting (Automati- | switch setting | ting (Automati-
Memory Card) cally read from cally read from | (Automatically | cally read from
Memory Card) memory cas- read from Memory Card)
sette) Memory Card)
Convert to EM file Set in PLC Setup Set in PLC Setup | No No No
Inter- Interrupt response No No Setin PLC No No
rupts Setup
(C200H/High-
speed
response)
Error detection Set in PLC Setup Set in PLC Setup | Setin PLC No No
Setup
Holding I/O inter- No No No Setin PLC No
rupts during 1/O inter- Setup
rupt program
execution
Power OFF interrupt | Set in PLC Setup Set in PLC Setup | No Setin PLC No
enabled/disabled Setup
Scheduled interrupt | Setin PLC Setup Set in PLC Setup | Setin PLC Setin PLC No
interval setting (10 ms, 1.0 ms) (also, |(10 ms, 1.0 ms) |Setup Setup (10 ms,

0.1 ms for CJ1M CPU
Unit only)

1 ms, 0.5 ms)

333




PLC Comparison Charts Appendix A
Item CJ Series CS Series C200HX/HG/ CvM1l/cV CQM1H
HE Series
Initial Power | Restart Continuation | No No No Setin PLC No
set- supply | Bit Hold Setup
tings Startup mode Set in PLC Setup Setin PLC Setup | Set in PLC Setin PLC Setin PLC
(contd.)
Setup Setup Setup
Startup Condition CJ1: No CS1: No No No No
Settings CJ1-H: Yes CS1-H: Yes
CJ1M: Yes
Startup trace No No No Setin PLC No
Setup
Detect low battery Set in PLC Setup Set in PLC Setup | Set in PLC Setin PLC Setin PLC
voltage Setup Setup Setup
Momentary power No No No Setin PLC No
interruption time Setup
Power OFF detec- Set in PLC Setup Set in PLC Setup | Set in PLC No No
tion delay time Setup
(Time that oper-
ation will con-
tinue after
power OFF has
been detected)
Momentary power No No No Setin PLC No
interruption as fatal/ Setup
non-fatal error
Cycles | I/O refresh No No Setin PLC Setin PLC No
Setup (Special | Setup
1/0 Units only)
Constant cycle time | Setin PLC Setup(1to | Setin PLC Setin PLC Setin PLC Setin PLC
32,000 ms) Setup(1 to Setup(1 to Setup (1 to Setup(1 to
32,000 ms) 9,999 ms) 32,000 ms) 9,999 ms)
Monitor cycle time Setin PLC Setup (10 |Setin PLC Setup | Setin PLC Setin PLC Setin PLC
to 40,000 ms) (Initial | (10to 40,000 ms) | Setup (0 to 99) | Setup (10 to Setup (0 to 99)
setting: 1,000 ms (Initial setting: Unit: 15,10 ms, | 40,000 ms) Unit: 1's, 10
fixed) 1,000 ms fixed) 100 ms (Initial | (Initial setting: | ms, 100 ms
setting: 120 ms | 1,000 ms fixed) | (Initial setting:
fixed) 120 ms fixed)
Detect cycle time No No Setin PLC No Setin PLC
over disable Setup Setup
Asynchronous No No No Setin PLC No
instruction execution Setup
and peripheral ser-
vicing
Serial | RS-232C port com- | DIP switch setting for | DIP switch set- DIP switch set- | DIP switch set- | DIP switch set-
com- munications settings | auto-detect or PLC ting for auto- ting for defaults | ting for defaults | ting for defaults
muni- Setup detect or PLC or PLC Setup or PLC Setup |or PLC Setup
cations Setup
Peripheral port com- | Setin PLC Setup Set in PLC Setup | PLC Setup Set on DIP Setin PLC
munications settings switch. Setup
Communications No No PLC Setup No PLC Setup
Board communica-
tions settings
CPU Parallel processing CJ1: No CS1: No No No No
pro- | modes CJ1-H: Yes CS1-H: Yes
fnegss‘ CJIM: No
mode | Peripheral Servicing | Yes Yes No No No
Priority Mode
Servic- | Service time Set in PLC Setup Set in PLC Setup | Setin PLC No Setin PLC
ing (Fixed Peripheral Ser- | (Fixed Peripheral | Setup Setup
other vicing Time) Servicing Time) | (Built-in RS- (Built-in RS-
periph- 232C port, 232C port,
erals Communica- Communica-
tions Board, tions Board,
peripheral port) peripheral port)
Measure CPU Bus No No No Setin PLC No
Unit service interval Setup
Stop Special I/0 Unit | Setin PLC Setup Set in PLC Setup | Setin PLC No No
Cyclic Refreshing Setup
CPU Bus link appli- [ No No No Setin PLC No
cation Setup

334




PLC Comparison Charts Appendix A
Item CJ Series CS Series C200HX/HG/ CVvM1l/cV CQM1H
HE Series
Initial Pro- Programming Con- Set on DIP switch CS1: Seton DIP | Seton DIP No Set on DIP
set- gram- | sole language switch switch switch
tings ming CS1-H: Set from
(contd.) | Con- Programming
sole Console
Errors | Error Log Area No (Fixed) No (Fixed) No (Fixed: Setin PLC No (Fixed:
DM 6001 to Setup DM 6569 to
DM6030) DM 6599)
Not registering user- | CJ1: No CS1: No No No No
defined FAL errorsin | cJ1-H: Yes CS1-H: Yes
error log CJIM: Yes
Opera- | CPU Standby No No No Setin PLC No
tion Setup
Auxil- | Condi- |ER, CY, <, >, =, Input using symbols, | Input using sym- | Yes Yes Yes
iary tion Always ON/OFF e.g., ER. bols, e.g., ER.
Area Flags |Flag, etc.
Clock pulses Input using symbols, | Input using sym- | Yes Yes Yes
eg., 0.1s. bols, e.g., 0.1 s.
Servic- | CPU Service Dis- No No No Yes No
ing able Bit
Codes for connected | No No No Yes No
devices
Peripherals process- | No No No Yes No
ing cycle times
CPU Bus Unit ser- No No No Yes No
vice interval
Peripherals con- No No No Yes No
nected to CPU
enabled/disabled
Host Link/NT Link No No No Yes No
Service Disable Bit
Peripheral Service No No No Yes No
Disable Bit
Scheduled Refresh No No No Yes No
Disable Bit
Inner Board General |No Yes Yes No Yes
Purpose Monitoring
Area
Cycle time over Yes Yes Yes Yes Yes
Tasks | First Task Flag Yes Yes No (Only First | No (Only First | No (Only First
Scan Flag) Scan Flag) Scan Flag)
Debug- | Online Editing Dis- Yes Yes Yes (AR) No No
ging abled Flag
Online Edit Standby | Yes Yes Yes (AR) No No
Flag
Output OFF Bit Yes Yes Yes Yes Yes
Forced Status Hold Yes Yes Yes Yes Yes
Bit
File File Memory Instruc- | Yes Yes No Yes No
mem- | tion Flag
ory EM File Memory For- | Yes (Except for CJIM | Yes No No No
mat Error Flag CPU Units)
EM File Format Start- | Yes (Except for CJIM | Yes No No No
ing Bank CPU Units)
Mem- | DIP Switch Status Yes (pin 6) Yes (pin 6) Yes (AR, pin6 |[No Yes (AR, pin 6)
ory Flags only)
I0OM Hold Bit Yes Yes Yes Yes Yes
Inter- Max. subroutine/ Yes Yes Yes No No
rupts action processing
time
Interrupt Task Error Yes Yes Yes No No

Flag

335



PLC Comparison Charts Appendix A
Item CJ Series CS Series C200HX/HG/ CvM1l/cV CQM1H
HE Series
Auxil- | Errors | Error log storage Yes Yes No Yes No
iary area/pointer
Area, E d Y Y Y Ye Ye
contd rror codes es es es es es
Initial Initializing PLC Setup | No No Yes No Yes
set-
tings
Com- | PLC Link Operating | Yes (PLC Link Auxil- | Yes (PLC Link Yes (AR) No No
muni- | Level Flags iary Area bit) Auxiliary Area bit)
cations
Power | Power Interruption No No No Yes No
supply | Flag
Power Interruption No No No Yes No
Time
Power ON Time Yes Yes No Yes No
Time at Power Inter- | Yes Yes No Yes Yes
ruption (including
power OFF)
Number of Momen- | Yes (Number of power | Yes (Number of | Yes (Number of | Yes Yes (Number of
tary Power Interrup- | interruptions) power interrup- power interrup- power interrup-
tions tions) tions) tions)
Total Power ON Time | Yes Yes No No No
Allocation meth- | Format Allocation is based on | Allocation is Fixed word allo- | Allocation is Allocation is
ods number of words based on num- cation: Each based on num- | based on num-

required by Units in

ber of words

Unit is automat-

ber of words

ber of words

order of connection. required by Units |ically allocated |required by required by
and vacant slots | one word Units and Units in order
are skipped. vacant slots of connection.
are skipped.
Group 2 High-den- None Same as for Group-2 alloca- | None None
sity I/O Unit alloca- Basic 1/0 tion area in IR
tion Area (position
determined by
front panel
switch)
Word reservation Change I/O table from | Change I/O table | Create I/Otable | Dummy I/O Automatic allo-

method

CX-Programmer.

from CX-Pro-
grammer.

with empty slot
or change 1/O

Unit or change
1/O table from

cation at star-
tup.

table made CX-Program-
from CX-Pro- mer.
grammer.
Spe- CIO Area Allocation in Special I/ | Allocation in Spe- | Allocation in Same as for Same as for
ciall/O O Unit Area accord- cial I/0 Unit Area | Special I/O Unit | Basic I/O Units; | Basic I/O Units;
Unit ing to Unit No. according to Unit | Area (in IR 2 or 4 words 1,2, or 4 words
alloca- 10 words per Unit for | No. 10 words per | Area) accord- | allocated in I/O | allocated in I/O
tion total of 96 Units. Unit for total of 96 | ing to Unit No. | Area (differs for | Area (differs for
Units. 10 words per each Unit) each Unit)
Unit for total of
16 Units.
DM Area Allocation in D20000 | Allocation in Allocation in None None
to D29599 according | D20000 to DM 1000 to
to unit number, D29599 accord- | DM 1999, and
100 words per Unit for | ing to unit num- DM 2000 to
total of 96 Units. ber, 100 words DM 2599 100
per Unit for total | words per Unit
of 96 Units. for total of 16
Units.
CPU CIO Area Allocation in CPU Bus | Allocationin CPU | None Allocation in None
Bus Unit Area according to | Bus Unit Area CPU Bus Unit
Unit/ Unit No. 25 words per | according to Unit Area accord-
CPU Unit for total of 16 No. 25 words per ing to Unit No.
Bus Units. Unit for total of 16 25 words per
Unit Units. Unit for total of
alloca- 16 Units.
tion DM Area Allocation in D30000 | Allocation in None Allocation in None
to D31599 according | D30000 to D02000 to
to Unit No. 100 words | D31599 accord- D03599
per Unit for total of 16 |ing to Unit No. according to
Units. 100 words per Unit No.
Unit for total of 16 100 words per
Units. Unit for total of
16 Units.

336




PLC Comparison Charts Appendix A
Item CJ Series CS Series C200HX/HG/ CvM1l/cV CQM1H
HE Series
1/0 Memory CIO Area Yes Yes Yes Yes Yes
WR Area Yes Yes No No No
Temporary Relay Yes Yes Yes Yes Yes
Area
Auxiliary Area Yes Yes Yes Yes Yes
SR Area No No Yes No Yes
Link Area Yes (Data Link Area) | Yes (Data Link Yes (Data Link | No Yes
Area) Area)
C200H Special I/0 Yes Yes Yes (CIO Area) |No No
Unit Area
Built-in 1/0 Area Yes (CJ1IM CPU Unit | No No No No
with built-in I/O only)
Serial PLC Link Area | Yes (CJ1M CPU Unit | No No No No
only)
DM Area Yes Yes Yes Yes Yes

Extended Data Mem-
ory (EM) Area

Yes (Addresses
including bank No.
can be designated)
(Not supported by

Yes (Addresses
including bank
No. can be desig-
nated)

Yes (Addresses
can be desig-
nated for -Z, but
banks cannot)

Yes (Address
including bank
cannot be des-
ignated; bank

Yes (no banks)

CJ1M CPU Unit) must be
changed. EM
Unit required.)
Timer/Counter Area | Yes Yes Yes Yes Yes
Index Registers Yes Yes No Yes No
Data Registers Yes Yes No Yes No
Force- | CIO Area Yes Yes Yes Yes None
set/
reset WR Area Yes Yes No No Yes
areas | Holding Yes Yes Yes No No
Area
Auxiliary No No Yes No Yes
Area
SR Area No No No No No
Link Area No No Yes No No
Timer/ Yes (Flag) Yes (Flag) Yes (Flag) Yes (Flag) Yes (Flag)
Counters
DM Area No No No No No
EM Area No No No No No

Instruction varia-
tions/ indirect
addresses

Upward differentia-
tion (executed once)

Yes (Specified by @)

Yes (Specified by
@)

Yes (Specified
by @)

Yes (Specified
by 1)

Yes (Specified
by @)

Downward differenti-
ation (executed once)

Yes (Specified by %)

Yes (Specified by
%)

No (DIFD
instruction used
instead)

Yes
(Specified by
4)

No (achieved
by using DIFD)

Immediate refresh

Yes (Specified by !)

Yes (Specified by
)

No (IORF
instruction used
instead)

Yes
(Specified by 1)

No (achieved
by using IORF)

Indi- BCD mode | Yes (0000 to 9999) Yes (0000 to Yes (0 to 9999) | Yes (0to 9999) | Yes (0000 to
rect Asterisk is used. 9999) 9999)
ad- Asterisk is used. Asterisk is
dress- used.
B,%Mfor Binary mode | Yes (00000 to 32767) | Yes (00000 to No Yes, but only No
EM @ is used. 32767) for indirect

0000 to 7FFF Hex: @ is used. addressing

0000 to 31767 0000 to 7FFF umSérrngofLC

8000 to FFFF Hex: Hex: 0000 to Y

00000 to 32767 in 31767 addresses.

next bank

8000 to FFFF
Hex: 00000 to
32767 in next
bank

337




PLC Comparison Charts Appendix A
Instruction Comparison
Item Mne- CJ Series CS Series C200HX/HG/HE CvM1l/CV CQM1H
monic Series
Sequence | LOAD/AND/OR LD/ Yes Yes Yes Yes Yes
Input AND/
Instructions OR
AND LOAD/OR AND Yes Yes Yes Yes Yes
LOAD LD/OR
LD
NOT NOT Yes Yes Yes Yes No
CONDITION ON uUpP Yes Yes No Yes (*1) No
CONDITION OFF |DOWN [Yes Yes No Yes (*1) No
BIT TEST TST/ Yes (Bit position | Yes (Bit position | Yes (Bit position | Yes (Bit position | No
TSTN specified in specified in specified in specified in
binary: binary: BCD.) (*2) BCD.) (*1)
0000 to 000F 0000 to 000F
Hex.) Hex.)
Sequence |OUTPUT ouT Yes Yes Yes Yes Yes
Output
Instructions TR TR Yes Yes Yes Yes Yes
KEEP KEEP Yes Yes Yes Yes Yes
DIFFERENTIATE |DIFU/ |Yes (LD, Yes (LDt, Yes (DIFU/ Yes (LDt, Yes (DIFU/
UP/DOWN DIFD AND1, OR?1) AND1, OR?1) DIFD) AND1, OR1)/ DIFD)
(LDt, AND1, (LDt, AND¢, (LDt, AND1,
ORV!) ORV!) ORV!)
SET and RESET SET/ Yes Yes Yes Yes Yes
RSET
MULTIPLE BIT SETA/ | Yes (Beginning | Yes (Beginning |No (*1) No
SET/RESET RSTA bit and number | bit and number (Beginning bit
of bits specified | of bits specified and number of
in binary.) in binary.) bits specified in
BCD.)
SINGLE BIT SET/ |SET/ CJ1: No CS1: No No No No
RESET RSTB  [cJ1-H: Yes CS1-H: Yes
CJ1M: Yes
SINGLE BIT OUT- [OUTB |[CJ1: No CS1: No No No No
PUT CJ1-H: Yes CS1-H: Yes
CJ1M: Yes
Sequence |END/NO OPERA- |END/ Yes Yes Yes Yes Yes
Control TION NOP
Instructions IINTERLOCK/ IUILC | Yes Yes Yes Yes Yes
INTERLOCK
CLEAR
JUMP/JUMP END |JMP/ Yes (Jump num- | Yes (Jump num- | Yes (Jump num- | Yes (Jump num- | Yes (Jump num-
JME ber specified in | ber specified in | ber specified in | ber specified in | ber specified in
BCD: 0 to 1023) | BCD: 0 to 1023) | BCD: 0 to 99.) BCD: 0t0999.) |BCD: 0to 99.)
CONDITIONAL CJP/ Yes (Jump num- | Yes (Jump num- | No Yes (Jump num- | No
JUMP CJPN ber specified in | ber specified in ber specified in
BCD: 0 to 1023.) | BCD: 0 to 1023.) BCD: 0 to 999.)
(*1)
MULTIPLE JUMP/ |JMPO/ |Yes Yes No No (but PLC No
JUMP END JMEO Setup can be set
to enable multi-
ple jumps with
jump number 0)
FOR/NEXT FOR/ Yes Yes No No No
LOOPS NEXT
BREAK LOOP BREAK | Yes Yes No No No

338




PLC Comparison Charts Appendix A
Item Mne- CJ Series CS Series C200HX/HG/HE cvm1l/cvV CQM1H
monic Series
Timerand |TIMER TIM Yes Yes Yes Yes Yes
Counter (BCD)
Instructions TIMX | Yes(*4) Yes(*4) No No No
(binary)
HIGH-SPEED TIMH Yes Yes Yes Yes Yes
TIMER (BCD)
TIMHX | Yes(*4) Yes(*4) No No No
(binary)
ONE-MS TIMER TMHH | Yes Yes No No No
(BCD)
TMHHX | Yes(*4) Yes(*4) No No No
(binary)
ACCUMULATIVE [TTIM Yes Yes Yes Yes Yes
TIMER (BCD)
TTIMX | Yes(*4) Yes(*4) No No No
(binary)
LONG TIMER TIML Yes Yes No Yes No
(BCD)
TIMLX | Yes(*4) Yes(*4) No No No
(binary)
MULTI-OUTPUT MTIM Yes Yes No Yes No
TIMER (BCD)
MTIMX | Yes(*4) Yes(*4) No No No
(binary)
COUNTER CNT Yes Yes Yes Yes Yes
(BCD)
CNTX Yes(*4) Yes(*4) No No No
(binary)
REVERSIBLE CNTR Yes Yes Yes Yes Yes
COUNTER (BCD)
CNTRX | Yes(*4) Yes(*4) No No No
(binary)
RESET TIMER/ CNR Yes (Only resets | Yes (Only resets | No Yes (Also clears | No
COUNTER (BCD) |timeror timer or specified range
counter.) counter.) in CIO area to
zero.)
CNRX | Yes(*4) Yes(*4) No No No
(binary)
Compari- Symbol compari- =, <, Yes (All are sup- | Yes (All are sup- | Yes (*2) (Sup- Yes (*1) (Sup- No
son Instruc- | son etc. ported for LD, ported for LD, ported for AND | ported for AND
tions OR, and AND) OR, and AND) only) only)
COMPARE/ CMP/ Yes Yes Yes Yes (*3) Yes
DOUBLE CMPL
COMPARE
SIGNED BINARY [CPS/ Yes Yes Yes Yes (*1) Yes
COMPARE/ CPSL
DOUBLE SIGNED
BINARY COM-
PARE
BLOCK COM- BCMP | Yes Yes Yes Yes Yes
PARE
EXTENDED BCMP2 | Yes (CJ1IM CPU | No No No No
BLOCK COMPARE Units only)
TABLE COMPARE | TCMP | Yes Yes Yes Yes Yes
MULTIPLE MCMP | Yes Yes Yes Yes Yes
COMPARE
EQUALS EQU No No No Yes No
AREA RANGE ZCP/ CJ1: No CS1: No Yes No No (achieved
COMPARE ZCPL (achieved using | (achieved using using compari-
comparison comparison son instructions)
instructions) instructions)
CJ1-H: Yes CS1-H: Yes
CJ1M: Yes

339




PLC Comparison Charts Appendix A

Item Mne- CJ Series CS Series C200HX/HG/HE Ccvm1l/cvV CQM1H

monic Series
Data Move- | MOVE MOV Yes Yes Yes Yes Yes
ment
Instruction DOUBLE MOVE MOVL |Yes Yes No Yes No

MOVE NOT MVN Yes Yes Yes Yes Yes

DOUBLE MOVE MVNL | Yes Yes No Yes No

DATA EXCHANGE [ XCHG |Yes Yes Yes Yes Yes

DOUBLE DATA XCGL |Yes Yes No Yes No

EXCHANGE

MOVE QUICK MOVQ |[No No No Yes No

BLOCK TRANS- XFER Yes (Number Yes (Number Yes (Number Yes (Number Yes (Number

FER of words to be of words to be of words to be of words to be of words to be
transferred transferred transferred transferred transferred
specified in specified in specified in specified in specified in
binary: 0 to binary: 0 to BCD: 0to 6144.) | BCD: 0t09999.) | BCD: 0 to 9999.)
65535.) 65535.)

BLOCK SET BSET Yes Yes Yes Yes Yes

MOVE BIT MOVB | Yes (Source bit | Yes (Source bit | Yes (Source bit | Yes (Source bit | Yes (Source bit
position and position and position and position and position and
destination bit destination bit destination bit destination bit destination bit
position speci- position speci- position speci- position speci- position speci-
fied in binary.) fied in binary.) fied in BCD.) fied in BCD.) fied in BCD.)

MULTIPLE BIT XFRB Yes Yes Yes Yes (*1) Yes

TRANSFER

MOVE DIGIT MOVD | Yes Yes Yes Yes Yes

SINGLE WORD DIST Yes (Stack oper- | Yes (Stack oper- | Yes (Stack oper- | Yes (Stack oper- | Yes (Stack oper-

DISTRIBUTE ation function is | ation function is | ation function is | ation function is | ation function is
possible with possible with possible. Offset | possible with possible. Offset
another instruc- | another instruc- |value specified |another instruc- | value specified
tion. Offset value | tion. Offsetvalue |in BCD: 0 to tion. Offsetvalue |in BCD: 0 to
specified in specified in 8999.) specified in 8999.)
binary: 0 to binary: 0 to BCD: 0 to 9999.)

65535.) 65535.)

DATA COLLECT COLL Yes (Stack oper- | Yes (Stack oper- | Yes (Stack oper- | Yes (Stack oper- | Yes (Stack oper-
ation function is | ation function is | ation function is | ation function is [ ation function is
possible with possible with possible. Offset | possible with possible. Offset
another instruc- | another instruc- | value specified |another instruc- |value specified
tion. Offset value | tion. Offsetvalue |in BCD: 0 to tion. Offsetvalue |in BCD: 0 to
specified in specified in 7999.) specified in 7999.)
binary: 0 to binary: 0 to BCD: 0 to 9999.)

65535.) 65535.)

EM BLOCK BXFR No (Functionally | No (Functionally | No Yes (*1) No

TRANSFER possible for up possible for up

BETWEEN BANKS to 65,535 words | to 65,535 words
by directly by directly
addressing EM | addressing EM
area using area using
XFER) XFER)

EM BLOCK XFR2 No No Yes No No

TRANSFER

EM BANK TRANS- | BXF2 No No Yes No No

FER

MOVE TO REGIS- | MOVR | Yes (No address | Yes (No address | No Yes (Address is | No

TER is specified for is specified for specified for
indirect DM/EM.) | indirect DM/EM.) indirect EM/DM.)

MOVE TIMER/ MOVR |Yes Yes No No (Possible for | No

COUNTER PV TO |W Completion

REGISTER Flags only using

MOVR)

340




PLC Comparison Charts Appendix A
Item Mne- CJ Series CS Series C200HX/HG/HE cvmi/cvV CQM1H
monic Series
Data Shift | SHIFT REGISTER | SFT Yes Yes Yes Yes Yes
Instructions
REVERSIBLE SFTR Yes Yes Yes Yes Yes
SHIFT REGISTER
ASYNCHRO- ASFT Yes Yes Yes Yes Yes
NOUS SHIFT
REGISTER
WORD SHIFT WSFT | Yes (Same as Yes (Same as Yes Yes Yes
CV: 3 operands) | CV: 3 operands)
ARITHMETIC ASL/ Yes Yes Yes Yes Yes
SHIFT LEFT/ ASR
ARITHMETIC
SHIFT RIGHT
ROTATE LEFT/ ROL/ Yes Yes Yes Yes Yes
ROTATE RIGHT ROR
ONE DIGIT SHIFT | SLD/ Yes Yes Yes Yes Yes
LEFT/ONE DIGIT |SRD
SHIFT RIGHT
SHIFT N-BIT NSFR/ |[Yes (Shift data | Yes (Shift data No Yes (Shift data No
DATA LEFT/SHIFT | NSFL and beginning and beginning and beginning
N-BIT DATA bit specified in bit specified in bit specified in
RIGHT binary.) binary.) BCD.) (*1)
SHIFT N-BITS NASL/ | Yes (Number Yes (Number No Yes (Number No
LEFT/SHIFT N- NASR, | of bits to be of bits to be of bits to be
BITS RIGHT/DOU- | NSLL/ | shifted specified | shifted specified shifted specified
BLE SHIFT N-BITS | NSRL in binary.) in binary.) in BCD.) (*1)
LEFT/DOUBLE
SHIFT NITS
RIGHT
DOUBLE SHIFT ASLL/ Yes Yes No Yes No
LEFT/DOUBLE ASRL
SHIFT RIGHT
DOUBLE ROTATE |ROLL/ |Yes Yes No Yes No
LEFT/DOUBLE RORL
ROTATE RIGHT
ROTATE LEFT RLNC/ |Yes Yes No Yes (*1) No
WITHOUT RRNC,
CARRY/ROTATE RLNL/
RIGHT WITHOUT | RRNL
CARRY/DOUBLE
ROTATE LEFT
WITHOUT
CARRY/DOUBLE
ROTATE RIGHT
WITHOUT CARRY
Increment | INCREMENT BCD/ | ++B/-— | Yes (++B/—-B) | Yes (++B/——-B) |Yes (INC/DEC) |Yes (INC/DEC) [Yes (INC/DEC)
and Decre- | DECREMENT B (INC/
ment BCD DEC)
Instructions '5 5B E INCRE- | ++BLI— | Yes (++BL/i—— | Yes (++BLi—— | No Yes (INCL/ No
MENT BCD/DOU- |-BL BL) BL) DECL)
BLE DECREMENT | (NCL/
BCD DECL)
INCREMENT ++/—— | Yes (CY turns Yes (CY turns No Yes No
BINARY/ DECRE- | (INCB/ |ON for carry or |ON for carry or
MENT BINARY DECB) [borrow) (++/—-) |borrow) (++/—-)
DOUBLE INCRE- | ++L/—— | Yes (CY turns Yes (CY turns No Yes No
MENT BINARY/ L ON for carry or | ON for carry or
DOUBLE DECRE- | |NBL/ borrow) (++L/—— | borrow) (++L/——
MENT BINARY pceL) (L L)
Math Instructions Yes Yes Yes Yes Yes

341




PLC Comparison Charts Appendix A
Item Mne- CJ Series CS Series C200HX/HG/HE cvm1i/cvV CQM1H
monic Series
Conversion | BCD-TO-BINARY/ | BIN/ Yes Yes Yes Yes Yes
Instructions | DOUBLE BCD-TO- | BINL
DOUBLE BINARY
BINARY-TO-BCD/ |BCD/ Yes Yes Yes Yes Yes
DOUBLE BINARY- | BCDL
TO-DOUBLE BCD
2'S COMPLE- NEG/ Yes (Same as Yes (Same as Yes Yes Yes
MENT/ DOUBLE NEGL |CV but UP does |CV but UP does
2'S COMPLE- not turn ON for | not turn ON for
MENT 8000 Hex at 8000 Hex at
source) source)
16-BIT TO 32-BIT | SIGN Yes Yes No Yes No
SIGNED BINARY
DATA DECODER MLPX Yes Yes Yes Yes Yes
DATA ENCODER DMPX | Yes (Same as Yes (Same as Yes (Leftmost bit | Yes (CVM1-V2: | Yes (Leftmost bit
CVM1-V2: Can |CVM1-V2: Can |only for ON.) Can specify only for ON.)
specifyrightmost | specify rightmost rightmost bit for
bit for ON.) bit for ON.) ON.)
ASCII CONVERT |ASC Yes Yes Yes Yes Yes
ASCII TO HEX HEX Yes Yes Yes Yes (*1) Yes
COLUMN TO LINE/ Yes (Bit position | Yes (Bit position | Yes (Bit position | Yes (Bit position | Yes (Bit position
LINE/LINE TO COLM | specified in specified in specified in specified in specified in
COLUMN binary.) binary.) BCD) BCD) BCD)
SIGNED BCD-TO- |BINS/ Yes Yes No Yes (*1) No
BINARY/DOUBLE |BISL
SIGNED BCD-TO-
BINARY
SIGNED BINARY- |BCDS/ |Yes Yes No Yes (*1) No
TO-BCD/DOUBLE | BDSL
SIGNED BINARY-
TO-BCD
Logic LOGICAL AND/ ANDW, | Yes Yes Yes Yes Yes
Instructions | LOGICAL OR/ ORW,
EXCLUSIVE OR/ | XORW,
EXCLUSIVE NOR | XNRW
DOUBLE LOGI- ANDL, |Yes Yes No Yes No
CAL AND/DOU- ORWL,
BLE LOGICAL OR/ | XORL,
DOUBLE EXCLU- | XNRL
SIVE OR/DOU-
BLE EXCLUSIVE
NOR
COMPLEMENT/ Cowm/ Yes Yes Yes (COM only) | Yes Yes (COM only)
DOUBLE COM- COML
PLEMENT
Special BCD SQUARE ROOT |Yes Yes Yes Yes Yes
Math ROOT
Instructions I'g|NARY ROOT  |ROTB | Yes Yes No Yes (*1) No
ARITHMETIC APR Yes Yes Yes Yes Yes
PROCESS
FLOATING POINT | FDIV Yes Yes Yes Yes No
DIVIDE
BIT COUNTER BCNT | Yes (Number of |Yes (Number of |Yes (Number of |Yes (Numberof |Yes (Number of

words to count
and count
results in binary:
0 to FFFF Hex)

words to count
and count
results in binary:
0 to FFFF Hex)

words to count
and count
results in BCD: 1
to 6656)

words to count
and count
resultsin BCD: 0
to 9999, but
error for 0)

words to count
and count
results in BCD: 1
to 6656)

342




PLC Comparison Charts

Appendix A

Item Mne- CJ Series CS Series C200HX/HG/HE cvmi/cvV CQM1H
monic Series
Floating- FLOATING TO 16- | FIX/ Yes Yes No Yes (*1) Yes
point Math | BIT/32-BIT BIN, FIXL,
Instructions | 16-BIT/32-BIT BIN | FLT/
TO FLOATING FLTL
FLOATING-POINT |+F —-F, |Yes Yes No Yes (*1) Yes
ADD/FLOATING- | *F /F
POINT SUB-
TRACT/FLOAT-
ING-POINT
MULTIPLY/
FLOATING-POINT
DIVIDE
DEGREES TO RAD, Yes Yes No Yes (*1) Yes
RADIANS/RADI- DEG
ANS TO
DEGREES
SINE/COSINE/ SIN, Yes Yes No Yes (*1) Yes
TANGENT/ARC COos,
SINE/ARC TAN- TAN,
GENT ASIN,
ACOS,
ATAN
SQUARE ROOT SQRT |Yes Yes No Yes (*1) Yes
EXPONENT EXP Yes Yes No Yes (*1) Yes
LOGARITHM LOG Yes Yes No Yes (*1) Yes
EXPONENTIAL PWR Yes Yes No No No
POWER
Floating-point Dec- | Exam- | CJ1: No CS1: No No No No
imal Comparison | ples:=F, [ cJ1-H: Yes CS1-H: Yes
<F |cam: Yes
Floating-point Dec- | FSTR, |CJ1: No CS1: No No No No
imal to Text String | FVAL CJ1-H: Yes CS1-H: Yes
CJ1M: Yes
Same as Single- Exam- [CJ1: No CS1: No No No No
Double-pre- | precision Floating- | ple: CJ1-H: Yes CS1-H: Yes
cision point Conversion FIX CJIIM: Yes
Floating- and Calculation :
point Con- | |nstructions, above
version and
Calculation
Instructions

343




PLC Comparison Charts Appendix A

Item Mne- CJ Series CS Series C200HX/HG/HE cvmi/cvV CQM1H

monic Series

Table Data | SET STACK SSET Yes (Four words | Yes (Four words | No Yes (Four words | No
Processing of stack control | of stack control of stack control
Instructions information. information. information.

Number of Number of Number of

words specified | words specified words specified

in binary: 5 to in binary: 5 to in BCD: 3to

65535) 65535) 9999)

PUSH ONTO PUSH Yes Yes No Yes No

STACK:

FIRST IN FIRST FIFO Yes Yes No Yes No

ouT

LAST IN FIRST LIFO Yes Yes No Yes No

ouT

FIND MAXIMUM/ | MAX, Yes (Two words | Yes (Two words | Yes (One word Yes (One word Yes (One word

FIND MINIMUM MIN in control data in control data in control data in control data in control data
field. Table field. Table field. Table field. Table field. Table
length specified |[length specified |length specified |[length specified |length specified
in binary: 1 to in binary: 1 to in BCD: 1to inBCD: 1to in BCD: 1to
FFFF) FFFF) 999) 999) 999)

DATA SEARCH SRCH | Yes (Table Yes (Table Yes (Table Yes (Table Yes (Table
length specified |[length specified |length specified |[length specified |length specified
in binary: 1 to in binary: 1 to in BCD: 1to in BCD: 1to in BCD: 1to
FFFF. PLC FFFF. PLC 6556. PLC 9999. PLC 6556. PLC
memory address | memory address | memory address | memory address | memory address
output to IRO. output to IRO. output to C+1. output to IRO. output to C+1.
Number of Number of Number of Number of Number of
matches can be | matches can be | matches cannot | matches cannot | matches cannot
output to DRO) output to DRO) be output to be output to be output to

DRO) DRO) DRO0)

FRAME CHECK- FCS Yes Yes Yes No Yes

SUM

SUM SUM Yes (Same as Yes (Same as Yes (Sum possi- | Yes (Sum possi- | Yes (Sum possi-
C200HX/HG/ C200HX/HG/ ble for bytes as | ble for words ble for bytes as
HE: Sum possi- | HE: Sum possi- |well as words.) |only.) well as words.)
ble for bytes as | ble for bytes as
well as words.) | well as words.)

SWAP BYTES SWAP | Yes (Can be Yes (Can be No No No
used for data used for data
communications | communications
and other appli- | and other appli-
cations.) cations.)

DIMENSION DIM Yes Yes No No No

RECORD TABLE:

SET RECORD SETR | Yes Yes No No No

LOCATION

GET RECORD GETR |Yes Yes No No No

LOCATION

Data Con- | SCALING SCL Yes Yes Yes No Yes
trol Instruc-
tions SCALING 2 SCL2 Yes Yes No No Yes

SCALING 3 SCL3 Yes Yes No No Yes

PID CONTROL PID Yes (Output can | Yes (Output can | Yes (PID and Yes (PID and Yes (PID and
be switched be switched sampling period | sampling period |sampling period
between 0% and | between 0% and | specified in specified in specified in
50% when PV = | 50% when PV = | BCD) BCD) (*1) BCD)

SV. PID and SV. PID and
sampling period | sampling period
specified in specified in
binary.) binary.)

PID CONTROL PIDAT |CJ1: No CS1: No No No No

WITH AUTO- CJ1-H: Yes CS1-H: Yes

TUNIG CJIM: Yes

LIMIT CONTROL |LMT Yes Yes No Yes (*1) No

DEAD BAND CON- | BAND |Yes Yes No Yes (*1) No

TROL

DEAD ZONE CON- | ZONE | Yes Yes No Yes (*1) No

TROL

AVERAGE AVG Yes (Number of | Yes (Number of |Yes (Number of |No Yes (Number of

scans specified
in binary)

scans specified
in binary)

scans specified
in BCD)

scans specified
in BCD)




PLC Comparison Charts Appendix A
Item Mne- CJ Series CS Series C200HX/HG/HE cvmi/cvV CQM1H
monic Series
Subrou- SUBROUTINE SBS, Yes (Subroutine | Yes (Subroutine | Yes (Subroutine | Yes (Subroutine | Yes (Subroutine
tines CALL/SUBROU- SBN, number speci- number speci- number speci- number speci- number speci-
Instructions | TINE ENTRY/SUB- | RET fied in BCD: O to |fied in BCD: O to |fied in BCD: 0 to |[fied in BCD: 0to [fied in BCD: 0 to
ROUTINE 1023) 1023) 255) 999) 255)
RETURN
MACRO MCRO | Yes (Subroutine | Yes (Subroutine | Yes (Subroutine | Yes (Subroutine | Yes (Subroutine
number speci- number speci- number speci- number speci- number speci-
fied in BCD: 0 to |fied in BCD: 0 to |fied in BCD: 0 to |fied in BCD: 0to |fied in BCD: 0 to
1023) 1023) 255) 999) (*1) 255)
Global Subroutine | GSBS, |[CJ1: No CS1: No No No No
Instructions GSBN, [CJ1-H: Yes CS1-H: Yes
RET  1cIiM: Yes
Interrupt SET INTERRUPT |MSKS |Yes Yes No (All interrupt | Yes No (All interrupt
Control MASK processing per- processing per-
Instructions formed with INT) formed with INT)
CLEAR INTER- CLI Yes Yes No Yes No
RUPT
READ INTER- MSKR | Yes Yes No Yes No
RUPT MASK:
DISABLE INTER- | DI Yes Yes No No No
RUPTS
ENABLE INTER- El Yes Yes No No No
RUPTS
ENABLE TIMER STIM No No No No Yes
High-speed | MODE CONTROL |[INI Yes (*5) No No No Yes
Counter/  ISoESENT VALUE |PRV | Yes (*5) No No No Yes
Pulse Out READ
put Instruc-
tions SET COMPARI- CTBL Yes (*5) No No No Yes
SON TABLE
SET PULSES PULS Yes (*5) No No No Yes
SET FREQUENCY [SPED | Yes (*5) No No No Yes
ACCELERATION ACC Yes (*5) No No No Yes
CONTROL
POSITION CON- |PLS2 Yes (*5) No No No Yes
TROL
ORIGIN SEARCH [ORG Yes (*5) No No No No
PWM OUTPUT PWM Yes (*5) No No No Yes
Step STEP DEFINE and | STEP/ |Yes Yes Yes Yes Yes
Instructions | STEP START SNXT
Basic 1/0 /O REFRESH IORF Yes Yes (Used for Yes (Used for Yes Yes
Unit C200H Group-2 | C200H Group-2
Instructions High-density I/O | High-density /O
Units and Spe- | Units and Spe-
cial I/O Units as | cial /O Units as
well. Includes well.)
functionality of
GROUP-2
HIGH-DENSITY
1/0 REFRESH
(MPRF))
7-SEGMENT SDEC |Yes Yes Yes Yes Yes
DECODER
GROUP-2 HIGH- MPRF | No No Yes No No
DENSITY 1/O
REFRESH
TEN KEY INPUT | TKY No No Yes No Yes
HEXADECIMAL HKY No No Yes No Yes
KEY INPUT
DIGITAL SWITCH |DSW No No Yes No Yes
INPUT
MATRIX INPUT MTR No No Yes No No
7-SEGMENT DIS- | 7SEG No No Yes No Yes
PLAY OUTPUT

345




PLC Comparison Charts

Appendix A

Item Mne- CJ Series CS Series C200HX/HG/HE CcvMm1l/cvV CQM1H
monic Series
Special /O | SPECIAL I/O UNIT |IORD/ |IORD/IOWR (Up | IORD/IOWR (Up | IORD/IOWR READ/WRIT No
Unit READ and SPE- IOWR to 96 Units. Will | to 96 Units. Will
Instructions | CIAL I/0 UNIT (READ/ | not be used to not be used to
WRITE WRIT) |send FINS com- | send FINS com-
(/O READ and I/0 mands any mands any
WRITE) more. more.
/O READ 2 and I/ |RD2/ No No No Yes (*1) No
O WRITE 2 WR2
Text String | MOV STRING MOV$ | Yes Yes No No No
ﬁ]rs"tfjgt?é”n% CONCATENATE [ +$ Yes Yes No No No
STRING
GET STRING LEFT$ |Yes Yes No No No
LEFT
GET STRING RGHTS$ | Yes Yes No No No
RIGHT
GET STRING MID- | MID$ Yes Yes No No No
DLE
FIND IN STRING FIND$ |Yes Yes No No No
STRING LENGTH |LEN$ Yes Yes No No No
REPLACE IN RPLC$ | Yes Yes No No No
STRING
DELETE STRING |DEL$ Yes Yes No No No
EXCHANGE XCHGS$ | Yes Yes No No No
STRING
CLEAR STRING: CLR$ Yes Yes No No No
INSERT INTO INS$ Yes Yes No No No
STRING

346




PLC Comparison Charts Appendix A

Item Mne- CJ Series CS Series C200HX/HG/HE Ccvm1l/cvV CQM1H

monic Series
Serial Com- | RECEIVE RXD Yes (Number of | Yes (Number of [ Yes (Number of |No Yes (Number of
munica- stored bytes stored bytes stored bytes stored bytes
tions specified in specified in specified in specified in
Instructions binary) (Only binary) (Only BCD) (Used for BCD) (Used for
used for RS- used for RS- peripheral port, peripheral port,
232C portin 232C portin RS-232C port or RS-232C port or
CPU Unit. Can- | CPU Unit. Can- | Communica- Communica-
not be used for | not be used for |tions Board in tions Board in
Serial Communi- | Inner Board, CPU Unit.) CPU Unit.)
cations Unit, or | Serial Communi-
CPU Unit's cations Unit, or
peripheral port) | CPU Unit’s
peripheral port)

TRANSMIT TXD Yes (Number of | Yes (Number of [ Yes (Number of |No Yes (Number of
stored bytes stored bytes stored bytes stored bytes
specified in specified in specified in specified in
binary) (Only binary) (Only BCD) (Used for BCD) (Used for
used for RS- used for RS- peripheral port, peripheral port,
232C portin 232C portin RS-232C port or RS-232C port or
CPU Unit. Can- | CPU Unit. Can- | Communica- Communica-
not be used for | not be used for |tions Board in tions Board in
Serial Communi- | Inner Board, CPU Unit.) CPU Unit.)
cations Unit or Serial Communi- (Unsolicited (Unsolicited
CPU Unit's cations Unit, or communica- communica-
peripheral port) | CPU Unit's tions possible tions possible
(Unsolicited peripheral port) | ysing Host Link using Host Link
communications | (Unsolicited EX command) EX command)
not possible communications
using Host Link | not possible
EX command) using Host Link

EX command)
CHANGE SERIAL |STUP Yes (10 words Yes (10 words Yes (5 words No Yes (5 words
PORT SETUP set) set) set) set)
Can be used for | Can be used for
Serial Communi- | Serial Communi-
cations Unit. cations Unit.

PROTOCOL PMCR | Yes (Sequence | Yes (Sequence | Yes (Sequence |No Yes (Sequence

MACRO number speci- number speci- number speci- number speci-
fied in binary. fied in binary. fied in BCD. fied in BCD.
Four operands. | Four operands. | Three oper- Three oper-
Can specify des- | Can specify des- | ands.) ands.)
tination unit tination unit
address and address and
Serial Port num- | Serial Port num-
ber.) ber.)

PCMCIA CARD CMCR [No No Yes No No

MACRO

Network NETWORK SEND/ | SEND/ | Yes (Can be Yes (Can be Yes (Cannot be | Yes (Can be Yes (Cannot be
Instructions | NETWORK RECV | used for host used for host used for host used for host used for host

RECEIVE computer via computer via computer via computer via computer via
Host Link con- Host Link con- Host Link con- Host Link con- Host Link con-
nections. Cannot | nections. Cannot | nections.) nections.) nections.)
be used for be used for
Serial Communi- | Serial Communi-
cations Units or | cations Units,

CPU Unit's RS- | CPU Unit’'s RS-
232C port.) 232C port, or
Inner Board.)

DELIVER COM- CMND | Yes (Used for Yes (Used for No Yes (Can be Yes (Cannot be

MAND host computer host computer used for host used for host
via Host Link via Host Link computer via computer via
connections. connections. Host Link con- Host Link con-
Cannot be used | Cannot be used nections.) nections.)
for Serial Com- | for Serial Com-
munications munications
Units or CPU Units, CPU
Unit's RS-232C | Unit's RS-232C
port.) port, or Inner

Board.)
File Mem- | READ DATA FILE/ |FREAD/ | Yes Yes No Yes (FILR/FILW) | No
ory Instruc- | WRITE DATA FILE | FWRIT
tions READ PROGRAM [FILP  [No No No Yes No
FILE
CHANGE STEP FLSP No No No Yes No

PROGRAM

347




PLC Comparison Charts Appendix A
Item Mne- CJ Series CS Series C200HX/HG/HE CcvMm1l/cvV CQM1H
monic Series
Display DISPLAY MES- MSG Yes (Messages | Yes (Messages | Yes (Messages |Yes (Messages |[Yes (Messages
Instructions | SAGE ended by NUL) |ended by NUL) |ended by CR) ended by CR) ended by CR)
DISPLAY LONG LMSG |No No Yes (Messages | No No
MESSAGE ended by CR)
1/0 DISPLAY IODP No No No Yes No
TERMINAL MODE | TERM |No No Yes No No
Clock CALENDAR ADD |CADD |Yes Yes No Yes No
Instructions
CALENDAR SUB- [CSUB Yes Yes No Yes No
TRACT
HOURS TO SEC- |SEC Yes Yes Yes Yes Yes
ONDS
SECONDS TO HMS Yes Yes Yes Yes Yes
HOURS
CLOCK ADJUST- | DATE Yes Yes No Yes (*1) No
MENT
Debugging | TRACE MEMORY |TRSM |Yes Yes Yes Yes Yes
Instructions | SAMPLING
MARK TRACE MARK [No No No Yes (Mark num- [ No
ber specified in
BCD)
Failure FAILURE ALARM/ | FAL/ Yes (Messages | Yes (Messages | Yes (Messages |Yes (Messages |[Yes (Messages
Diagnosis | SEVERE FAIL- FALS ended by NUL, |ended by NUL, |ended by CR, ended by CR, ended by CR,
Instructions | URE ALARM text strings text strings text strings text strings text strings
stored in order of | stored in order of | stored in order stored in order of | stored in order
leftmost to right- | leftmost to right- | of leftmost to leftmost to right- | of leftmost to
most byte and most byte and rightmost byte most byte and rightmost byte
thenrightmostto |thenrightmostto | and then right- | thenrightmostto |and then right-
leftmost word. leftmost word. most to leftmost | leftmost word. most to leftmost
FAL number FAL number word. FAL num- | FAL number word. FAL num-
specified in specified in ber specified in | specified in ber specified in
binary.) binary.) BCD.) BCD.) BCD.)
FAILURE POINT FPD Yes (Messages | Yes (Messages | Yes (Messages |Yes (Messages |[Yes (Messages
DETECTION ended by NUL, |ended by NUL, |ended by CR, ended by CR, ended by CR,
text strings text strings text strings text strings text strings
stored in order of | stored in order of | stored in order stored in order of | stored in order
leftmost to right- | leftmost to right- | of leftmost to leftmost to right- | of leftmost to
most byte and most byte and rightmost byte most byte and rightmost byte
thenrightmostto |thenrightmostto | and then right- | thenrightmostto |and then right-
leftmost word. leftmost word. most to leftmost | leftmost word. most to leftmost
FAL number FAL number word. FAL num- | FAL number word. FAL num-
specified in specified in ber specified in | specified in ber specified in
binary.) binary.) BCD.) BCD.) (*1) BCD.)
Other SET CARRY/ STC/ Yes Yes Yes Yes Yes
Instructions | CLEAR CARRY CLC
LOAD FLAGS/ CCL, CJ1: No CS1: No No Yes No
SAVE FLAGS CCS | CJ1-H: Yes CS1-H: Yes
CJ1M: Yes
EXTEND MAXI- WDT Yes Yes Yes Yes (*1) Yes
MUM CYCLE TIME
CYCLE TIME SCAN No No Yes No No
LOAD REGISTER/ | REGL, |No No No Yes No
SAVE REGISTER |REGS
SELECT EM EMBC |Yes Yes Yes Yes No
BANK:
EXPANSION DM XDMR |No No Yes No No
READ
INDIRECT EM IEMS No No Yes No No
ADDRESSING
ENABLE ACCESS/ | IOSP, No CS1: No No Yes No
DISABLE ACCESS | IORS CS1-H: Yes
CV-CS Address FRMCV [ CJ1: No CS1: No No No No
Conversion TOCV | CJ1-H: Yes CS1-H: Yes
Instructions CJIM: Yes

348




PLC Comparison Charts Appendix A

Item Mne- CJ Series CS Series C200HX/HG/HE Ccvm1l/cvV CQM1H
monic Series

Block Programming Instructions | BPRG/ | Yes Yes No Yes (*1) No
BEND,
IF/
ELSE/
IEND,
WAIT,
EXIT,
LOOP/
LEND,
BPPS/
BPRS,
TIMW,
CNTW,
TMHW

Task Con- | TASK ON/TASK TKON/ |Yes Yes No No No
trol Instruc- | OFF TKOF
tions

Note *1: Supported only by CVM1 (V2).
*2: Supported only by CPULIC]-Z models.
*3: Continuation on same program run supported by CV1M version 2,
*4: Except for CS1 and CJ1 CPU Units.
*5: CJ1M CPU Units with built-in I/O only. Some operands differ from those used by the CQM1H.

349







Appendix B

Changes from Previous Host Link Systems

There are differences between Host Link Systems created using the CS/CJ-series Serial Communications
Boards (CS Series only) and Unit in comparison to Host Link Systems created with Host Link Units and CPU
Units in other PLC product series. These differences are described in this sections.

RS-232C Ports

Take the following differences into consideration when changing from an existing Host Link System to one
using an RS-232C port on a CS/CJ-series CPU Unit, Serial Communications Boards (CS Series only), or
Serial Communications Unit (CS1H/G-CPULI] RS-232C port, CS1W-SCU21 ports, CS1W-SCB21 ports,
CS1W-SCB41 port 1, or CJ1W-SCUA41 port 2).

Previous
products

Model number

Changes required for CS/CJ-series product

Wiring

Other

C-series Host
Link Units

3G2A5-LK201-E
C500-LK203
3G2A6-LK201-E

The connector has been
changed from a 25-pin to a 9-
pin connector.

The CS/CJ-series products
do not support the ST1, ST2,
and RT signals and wiring
them is not required.

The following changes are necessary for
systems that sync with ST1, ST2, and RT.

Synchronized transfers will no longer be possi-
ble.

Full-duplex transmissions will be possible with
the CS/CJ-series product, but the host com-
puter's communications program, hardware, or
both will need to be altered.

The following changes are necessary for
systems that did not sync with ST1, ST2,
and RT.

It may be possible to use the host computer
programs without alteration as long as the
same communications settings (e.g., baud rate)
are used. It may be necessary, however, to
change programs to allow for different text
lengths in frames or different CS/CJ command
specifications. (See note.)

C200H-LK201

The connector has been
changed from a 25-pin to a 9-
pin connector.

It may be possible to use the host computer
programs without alteration as long as the
same communications settings (e.g., baud rate)
are used. It may be necessary, however, to
change programs to allow for different text
lengths in frames or different CS/CJ command
specifications. (See note.)

C-series CPU
Units

SRM1

CPM1

CPM1A
CQM1-CPULILI-E
C200HS-CPULILI-E

C200HX/HG/HE-
CPULILI-E

C200HW-COMOII-E

No changes have been made
in wiring.

It may be possible to use the host computer
programs without alteration as long as the
same communications settings (e.g., baud rate)
are used. It may be necessary, however, to
change programs to allow for different CS/CJ
command specifications.

351



Chang_;esfrom Previous Host Link Systems

Appendix B

series Host Link
Unit

Previous Model number Changes required for CS/CJ-series product
products Wiring Other
CVML1 or CV- CVM1/CV-CPULILI-E | Nochanges have been made | It may be possible to use the host computer
series CPU in wiring. programs without alteration as long as the
Units same communications settings (e.g., baud rate)
are used. It may be necessary, however, to
change programs to allow for different CS/CJ
command specifications.
CVML1 or CV- CV500-LK201 Port 1: The following changes are necessary for

The connector has been
changed from a 25-pin to a 9-
pin connector.

Port 2 set for RS-232C:
The SG signal has been
changed from pin 7 to pin 9.

half-duplex transmissions that use CD.

Check the system for timing problems when
using SEND, RECV, or CMND to initiate com-
munications from the PLC or timing problems in
sending commands from the host computer. If
necessary, switch to full-duplex transmissions.

The following changes are necessary for
full-duplex transmissions that do not use
CD.

Half-duplex It may be possible to use the host
computer programs without alteration as long
as the same communications settings (e.g.,
baud rate) are used. It may be necessary, how-
ever, to change programs to allow for different
CS/CJ command specifications.

Note The number of words that can be read and written per frame (i.e., the text lengths) when using C-mode
commands is different for C-series Host Link Units and CS/CJ-series Serial Communications Boards/
Units. A host computer program previously used for C-series Host Link Units may not function correctly if
used for CS/CJ-series PLCs. Check the host computer program before using it and make any correc-
tions required to handle different frame text lengths. Refer to the CS/CJ-series Communications Com-
mands Reference Manual (W342) for details.

RS-422A/485 Ports

Take the following differences into consideration when changing from an existing Host Link System to one
using an RS-422A/485 port on a CS-series Serial Communications Board (CS1W-SCB41 port 2) or a CJ-
series Serial Communications Unit (CJ1W-SCUA41 port 1).

Previous
products

Model number

Changes required for CS/CJ-series product

Wiring

Other

C-series Host Link
Units

3G2A5-LK201-E
C200H-LK202
3G2A6-LK202-E

Wiring pins have been
changed as shown below.

SDA: Pin9topin1l
SDB: Pin 5 to pin 2
RDA: Pin 6 to pin 6
RDB: Pin 1 to pin 8
SG: Pin 3to
Not connected
FG: Pin 7 to pin
Connector hood

It may be possible to use the host computer
programs without alteration as long as the
same communications settings (e.g., baud
rate) are used. It may be necessary, however,
to change programs to allow for different text
lengths in frames or different CS/CJ com-
mand specifications. (See note.)

C200HX/HG/HE
Communications
Board

C200HW-COMLIT-E

No changes have been made
in wiring.

It may be possible to use the host computer
programs without alteration as long as the
same communications settings (e.g., baud
rate) are used. It may be necessary, however,
to change programs to allow for different CS/
CJ command specifications.

352



Changesfrom Previous Host Link Systems

Appendix B

Previous Model number Changes required for CS/CJ-series product
products Wiring Other
CVML1 or CV- CVM1/CV-CPULICI-E | No changes have been made | It may be possible to use the host computer

series CPU Units

CVM1 or CV- CV500-LK201

series Host Link

Unit

in wiring.

CJ command specifications.

programs without alteration as long as the
same communications settings (e.g., baud
rate) are used. It may be necessary, however,
to change programs to allow for different CS/

Note The number of words that can be read and written per frame (i.e., the text lengths) when using C-mode
commands is different for C-series Host Link Units and CS/CJ-series Serial Communications Boards/
Units. A host computer program previously used for C-series Host Link Units may not function correctly if
used for CS/CJ-series PLCs. Check the host computer program before using it and make any correc-
tions required to handle different frame text lengths. Refer to the CS/CJ-series Communications Com-
mands Reference Manual (W342) for details.

353







A

addressing
index registers, 254
indirect addresses, 26—27
memory addresses, 24
operands, 25
See also index registers
aarms
user-programmed alarms, 299
applications
file memory, 199
precautions, xiv
ASCII characters, 29
automatic transfer at startup, 191, 216

B

backing up data, 295
Basic 1/0 Units
Basic I/0 Unit instructions, 131
input response time, 316
battery
compartment, 2
installation, 2
BCD data, 30
block programs, 22, 60, 63
block programming instructions, 140
relationship to tasks, 170

C

C200H Communications Boards, 352
C200HX/HG/HE Communications Board

changes in communications specifications, 352

C200HX/HG/HE PLCs

comparison, 329
Carry Flag, 59
clearing memory, 4
clock, 291

clock instructions, 136

setting the clock, 5
communications

messages, 269

no-protocol, 270

See also serial communications

serial communications instructions, 132
comparison

previous products, 352
complete link method, 273
Condition Flags, 55

operation in tasks, 164
constants

operands, 28

| ndex

counters

refresh mode, 278
CPU Unit

basic operation, 154

capacities, 42

internal structure, 6

operation, 1
C-series Host Link Units

changesin communications specifications, 351
C-series Units

changes in communications specifications, 352
CVM1 Units

changes in communications specifications, 352—353
CV-seriesPLCs

comparison, 329
CV-series Units

changes in communications specifications, 352—353
CX-Programmer, 20

file memory, 203
cycletime

minimum cycle time, 237

monitoring, 238

setting, 238

task execution time, 18
cyclic refreshing, 39, 240
cyclic tasks, 153, 156

Disabled status (INI), 159

READY status, 159

RUN status, 159

status, 159

WAIT status, 159

D

data areas
addressing, 24
datafiles, 199
dataformats, 30
datatracing, 325
date
setting the clock, 5
dates
program and parameters, 293
debugging, 298, 320
debugging instructions, 137
failure diagnosisinstructions, 138
DeviceNet
precaution, 299
diagnosis, 298
differentiated instructions, 37
directories, 193
down-differentiated instructions, 35

355



I ndex

E

EC Directives, xix
EM file memory, 186
initializing, 228
operations, 232
See also file memory
Equals Flag, 59
error log, 298
errors
access error, 66
error log, 298
failure point detection, 300
fatal, 68
illegal instruction error, 66
instruction processing error, 66
program input, 64
programming errors, 68
UM overflow error, 66
user-programmed errors, 299
executable status
description, 16
execution conditions
tasks, 158
variations, 34
external interrupts
tasks, 157, 172—174, 177

F

failure darms, 299
failure point detection, 300
file memory, 185
accessing directories, 193
applications, 199, 228
file memory instructions, 135, 206
file names and file types, 190
functions, 185
manipulating files, 201
parameter files, 200
program files, 200
file names, 190
file types, 190
FINS commands
file memory, 204
list, 268
flags, 22
Condition Flags, 55
flash memory, 295
floating-point data
floating-point math instructions, 110
floating-point decimal, 31
force-resetting bits
debugging, 320

356

force-setting bits

debugging, 320
FOR-NEXT loop, 60

G

Greater Than Flag, 59

H

high-speed inputs, 239

Host Link commands, 266

Host Link communications, 265
Host Link Units

changesin communications specifications, 352

hot starting, 288
hot stopping, 288

1/0 alocations
first word settings, 317
1/O interrupts
tasks, 156, 171—174
1/0 memory, 6—7
addressing, 24
initializing, 10
tasks, 163
1/0 refreshing, 39
1/0 response time
CS/CJBasic /O Units, 316
immediate refreshing, 34, 39, 240
index registers, 27, 254
Initial Task Execution Flag, 166
initialization
EM file memory, 228
1/0 memory, 10
Memory Cards, 228
installation
initial setup, 2, 5
precautions, xiv
instruction conditions
description, 21
instructions
Basic I/0 Unit instructions, 131
basic instructions, 21
block programming instructions, 140
block programs, 63
clock instructions, 136
comparison instructions, 84
controlling tasks, 161
conversion instructions, 101
counter instructions, 80
data control instructions, 122
data movement instructions, 88



I ndex

data shift instructions, 91
debugging instructions, 137
decrement instructions, 95
differentiated instructions, 37
display instructions, 136
execution conditions, 34
failure diagnosisinstructions, 138
file memory, 206
file memory instructions, 135
floating-point math instructions, 110
high-speed counter and pulse output instructions, 129
increment instructions, 95
index registers, 257
input and output instructions, 21, 23
input differentiation, 35
instruction conditions, 21
interrupt control instructions, 127
logic instructions, 107
loops, 22, 60
network instructions, 133
operands, 22
programming locations, 23
restrictions in tasks, 164
sequence control instructions, 77
sequence input instructions, 72
sequence output instructions, 74
serial communications instructions, 132
special math instructions, 109
step instructions, 130
subroutine instructions, 125
symbol math instructions, 96
table data processing instructions, 114, 118
task control instructions, 149
text string processing instructions, 146
timer instructions, 80
timing, 37
variations, 34
interlocks, 22, 38, 60
interrupt tasks, 153, 156, 171—182
precautions, 180
priority, 178
related flags and words, 179
interrupts, 239
disabling, 182
priority of interrupt tasks, 178
See also external interrupts
10OM Hold Bit, 289
IORF(097) refreshing, 41, 241
interrupt tasks, 181

jumps, 38, 60
Less Than Flag, 59

loops
FOR/NEXT loops, 60

M

mathematics
floating-point math instructions, 110
special math instructions, 109
symbol math instructions, 96
maximum cycle time, 238
memory
block diagram of CPU Unit memory, 7
clearing, 4
See also file memory
See also 1/0 memory
See also user memory
Memory Cards, 7, 186
initializing, 228
precautions, 187
messages, 269
minimum (fixed) cycle time, 237
mnemonics, 43
inputting, 47
MONITOR mode
description, 9
monitoring
differential monitoring, 321
remote monitoring, 294

N

Negative Flag, 59
networks

network instructions, 133
no-protocol communications, 270

O

online editing, 322
operands

constants, 28

description, 22

specifying, 25

text strings, 28
operating environment

precautions, xiv
operating modes

description, 8

startup mode, 11
operation

basic operation, 154

CPU Unit, 1

debugging, 320

trial operation, 320
Output OFF Bit, 324
output OFF function, 299
outputs

turning OFF, 299, 324

357



I ndex

P

Parameter Area, 7
files, 200
Parameter Date, 293
peripheral servicing
priority servicing, 308
Peripheral Servicing Priority Mode, 308
PLC Setup, 7
PLCs
comparison, 329
Polled Units
settings, 276
Polling Unit
setting, 276
Polling Unit link method, 273
power flow
description, 21
power interrupts
disabling, 290
power OFF detection delay, 290
power OFF interrupts
tasks, 156, 171, 175177
precautions, Xi
applications, xiv
general, xii
1/O refreshing, 9
interrupt tasks, 180
operating environment, xiv
programming, 55
safety, xii
previous products
comparison, 352
program capacity, 42
program errors, 68
program files, 200
PROGRAM mode
description, 8—9
program structure, 43
program transfer, 320
programming, 19
basic concepts, 42
block programs, 22, 60
restrictions, 63
checking programs, 64
designing tasks, 169
errors, 64
examples, 50
instruction locations, 23
mnemonics, 43
power flow, 21
precautions, 55
program capacity, 42
program protection, 292

358

program structure, 12, 15, 43

programs and tasks, 12, 20

protecting the program, 292

remote programming, 294

restrictions, 45

See also block programs

step programming, 60

restrictions, 62

tasks and programs, 153

transferring the program, 320
Programming Consoles

file memory, 203
Programming Devices

file memory, 201

task operations, 183
programs

See also programming

R

range instructions, 260
read/write-protection, 293
record-table instructions, 260
refresh mode, 278
timers and counters, 278
refreshing
cyclic refreshing, 39, 240
1/O refreshing, 39, 240
immediate refreshing, 34, 39, 240
IORF(097), 41, 181, 241
refreshing data, 273
RS-232C ports
changes from previous products, 351
RS-422A/485 ports
changes from previous products, 352
RUN mode
description, 9
RUN output, 290

S

safety precautions, xii
scheduled interrupts
tasks, 156, 171, 174175
usage astimer, 286
serial communications
functions, 263
Seria PLC Links, 272—273
alocated words, 275
PLC Setup, 276
related flags, 277
settings
See also switch settings
startup settings, 288



I ndex

setup
See alsoinstalation
signed binary data, 30
stack processing, 258
standby status
description, 16
startup
automatic file transfer, 191, 216
hot starting and stopping, 288
startup mode, 289
step programming, 60
subroutines, 60

T

table data
processing, 260
Task Error Flag, 167
Task Flags, 165
tasks, 12, 151
advantages, 152
creating tasks, 183
cyclic tasks, 153, 156
description, 14
designing, 169
examples, 167
execution, 162
execution conditions, 158
execution time, 18
features, 152
flags, 165
interrupt tasks, 153, 156, 172
introduction, 156
limitations, 164
operation of Condition Flags, 164

relationship to block programs, 170

See also cyclic tasks
See also interrupt tasks
status, 16
task control instructions, 149
task numbers, 163
timers, 164
text strings
operands, 28

text string processing instructions, 146

time
setting the clock, 5
timers, 278

creating with schedule interrupts, 286

trial operation, 320

U

Units

profiles, 294
unsigned binary data, 30
up-differentiated instructions, 35
user program, 6—7

See also programming
User Program Date, 293

V-W

write-protection, 292

359






Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W394-E1-05

Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content
01 April 2001 Original production
02 October 2001 | Added information on high-speed CS-series and high-speed CJ-series CPU Units (CS1G/H-
CPULIH and CJ1G/H-CPULILIH)) throughout the manual.
03 July 2002 Information on CJ1M CPU Units added throughout.

PC changed to PLC for “Programmable Controller.”

Other changes are as follows:

Pages xvi and xviii: Caution added.

Page xix: Item 2 at bottom of page changed.

Page 28: Description for text string changed.

Page 167: Programming example changed.

Pages 168, 169, 265, and 266: Information added on DC power supplies.
Page 179: Precautions added on Memory Cards.

Page 229: lllustration changed.

Page 262: Information added on timer/counter refresh method.
Page 273: Precaution added on DeviceNet.

Page 301: Units corrected in processing speeds.

Page 304: Interrupt response time corrected.

Page 320: CJ1 support for IOSP/IORS changed.

04 September 2002 | Information on CJ1D CPU Units added throughout.

Other changes are as follows:

Page xv: Caution added on backup function.

Pagedxvi: First caution rewritten and CPU Unit types in startup operating mode caution cor-
rected.

Page xviii: Caution added on RS-232C port toward middle of page.

Page 6: Information added on CX-Programmer versions.

Page 184: Memory Card information in table corrected.

Page 274: Range for setting maximum unit number changed toward top of page.
Page 294: Note changed to Caution and rewritten.

Page 303: Note 3 rewritten.

Page 304: Addition made to middle table.

05 April 2003 Page 44: First basic ladder program concept rewritten.

Page 45: Second restriction information changed.

Page 46: Fourth restriction information changed. Sixth restriction information removed.
Page 54: Information on rungs requiring caution or rewriting changed.

Pagly(es 157 and 158: Changes made to table of differences between extra and normal cyclic
tasks.

Page 220: Note 5 added.

Page 226: Information changed regarding supported units.

Page 233: Information changed regarding power interruptions while accessing file memory.
Page 264: Note added.

Page 273: Note added.

Page 276: Information changed in tables. Note added under first table and note changed under
second table.

Page 310: Information under first table regarding CX-Programmer changed.

Page 314: Information added to second note.

Page 326: Information added to step 1 in data trace procedure.

361



Revision History

362



OMRON CORPORATION

FA Systems Division H.Q.

66 Matsumoto

Mishima-city, Shizuoka 411-8511

Japan

Tel: (81)55-977-9181/Fax: (81)55-977-9045

Regional Headquarters

OMRON EUROPE B.V.

Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands

Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ELECTRONICS LLC

1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.

Tel: (1)847-843-7900/Fax: (1)847-843-8568

OMRON ASIA PACIFIC PTE. LTD.

83 Clemenceau Avenue,

#11-01, UE Square,

Singapore 239920

Tel: (65)6835-3011/Fax: (65)6835-2711



OMRON

Authorized Distributor:

- J

Cat. No. W394-E1-05 Note: Specifications subject to change without notice Printed in Japan



uoyuwo IVANVIN ONINNVHOOdd SJ3|]01u0D d|qewwelboid salles £O/SO S0-T3-¥6EM "ON "1eD



	SYSMAC CS Series CS1G/H-CPU__-EV1 CS1G/H-CPU__H CS1D-CPU__H SYSMAC CJ Series CJ1G-CPU__ CJ1G/H-CPU__H CJ1M-CPU__ Programmable Controllers
	About this Manual:
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 Safety Precautions
	4 Operating Environment Precautions
	5 Application Precautions
	6 Conformance to EC Directives
	6-1 Applicable Directives
	6-2 Concepts
	6-3 Conformance to EC Directives
	6-4 Relay Output Noise Reduction Methods


	SECTION 1 CPU Unit Operation
	1-1 Initial Setup (CS1 CPU Units Only)
	1-2 Using the Internal Clock (CS1 CPU Units Only)
	1-3 Internal Structure of the CPU Unit
	1-3-1 Overview
	1-3-2 Block Diagram of CPU Unit Memory

	1-4 Operating Modes
	1-4-1 Description of Operating Modes
	1-4-2 Initialization of I/O Memory
	1-4-3 Startup Mode

	1-5 Programs and Tasks
	1-6 Description of Tasks

	SECTION 2 Programming
	2-1 Basic Concepts
	2-1-1 Programs and Tasks
	2-1-2 Basic Information on Instructions
	2-1-3 Instruction Location and Execution Conditions
	2-1-4 Addressing I/O Memory Areas
	2-1-5 Specifying Operands
	2-1-6 Data Formats
	2-1-7 Instruction Variations
	2-1-8 Execution Conditions
	2-1-9 I/O Instruction Timing
	2-1-10 Refresh Timing
	2-1-11 Program Capacity
	2-1-12 Basic Ladder Programming Concepts
	2-1-13 Inputting Mnemonics
	2-1-14 Program Examples

	2-2 Precautions
	2-2-1 Condition Flags
	2-2-2 Special Program Sections

	2-3 Checking Programs
	2-3-1 Errors during Programming Device Input
	2-3-2 Program Checks with the CX-Programmer
	2-3-3 Program Execution Check
	2-3-4 Checking Fatal Errors


	SECTION 3 Instruction Functions
	3-1 Sequence Input Instructions
	3-2 Sequence Output Instructions
	3-3 Sequence Control Instructions
	3-4 Timer and Counter Instructions
	3-5 Comparison Instructions
	3-6 Data Movement Instructions
	3-7 Data Shift Instructions
	3-8 Increment/Decrement Instructions
	3-9 Symbol Math Instructions
	3-10 Conversion Instructions
	3-11 Logic Instructions
	3-12 Special Math Instructions
	3-13 Floating-point Math Instructions
	3-14 Double-precision Floating-point Instructions (CS1-H, CJ1- H, CJ1M, or CS1D Only)
	3-15 Table Data Processing Instructions
	3-16 Data Control Instructions
	3-17 Subroutine Instructions
	3-18 Interrupt Control Instructions
	3-19 High-speed Counter and Pulse Output Instructions (CJ1MCPU22/ 23 Only)
	3-20 Step Instructions
	3-21 Basic I/O Unit Instructions
	3-22 Serial Communications Instructions
	3-23 Network Instructions
	3-24 File Memory Instructions
	3-25 Display Instructions
	3-26 Clock Instructions
	3-27 Debugging Instructions
	3-28 Failure Diagnosis Instructions
	3-29 Other Instructions
	3-30 Block Programming Instructions
	3-31 Text String Processing Instructions
	3-32 Task Control Instructions

	SECTION 4 Tasks
	4-1 Task Features
	4-1-1 Overview
	4-1-2 Tasks and Programs
	4-1-3 Basic CPU Unit Operation
	4-1-4 Types of Tasks
	4-1-5 Task Execution Conditions and Settings
	4-1-6 Cyclic Task Status
	4-1-7 Status Transitions

	4-2 Using Tasks
	4-2-1 TASK ON and TASK OFF
	4-2-2 Task Instruction Limitations
	4-2-3 Flags Related to Tasks
	4-2-4 Designing Tasks
	4-2-5 Global Subroutines

	4-3 Interrupt Tasks
	4-3-1 Types of Interrupt Tasks
	4-3-2 Interrupt Task Priority
	4-3-3 Interrupt Task Flags and Words
	4-3-4 Application Precautions

	4-4 Programming Device Operations for Tasks
	4-4-1 Using Multiple Cyclic Tasks
	4-4-2 Programming Device Operations


	SECTION 5 File Memory Functions
	5-1 File Memory
	5-1-1 Types of File Memory
	5-1-2 File Data
	5-1-3 Files
	5-1-4 Description of File Operating Procedures
	5-1-5 Applications

	5-2 Manipulating Files
	5-2-1 Programming Devices (Including Programming Consoles)
	5-2-2 FINS Commands
	5-2-3 FREAD(700), FWRIT(701), and CMND(490)
	5-2-4 Replacement of the Entire Program During Operation
	5-2-5 Automatic Transfer at Startup
	5-2-6 Simple Backup Function

	5-3 Using File Memory
	5-3-1 Initializing Media
	5-3-2 Operating Procedures
	5-3-3 Power Interruptions while Accessing File Memory


	SECTION 6 Advanced Functions
	6-1 Cycle Time/High-speed Processing
	6-1-1 Minimum Cycle Time
	6-1-2 Maximum Cycle Time (Watch Cycle Time)
	6-1-3 Cycle Time Monitoring
	6-1-4 High-speed Inputs
	6-1-5 Interrupt Functions
	6-1-6 I/O Refreshing Methods
	6-1-7 Disabling Special I/O Unit Cyclic Refreshing
	6-1-8 Improving Refresh Response for CPU Bus Unit Data
	6-1-9 Maximum Data Link I/O Response Time
	6-1-10 Background Execution
	6-1-11 Sharing Index and Data Registers between Tasks

	6-2 Index Registers
	6-2-1 What Are Index Registers?
	6-2-2 Using Index Registers
	6-2-3 Processing Related to Index Registers

	6-3 Serial Communications
	6-3-1 Host Link Communications
	6-3-2 No-protocol Communications
	6-3-3 NT Link (1:N Mode)
	6-3-4 Serial PLC Links (CJ1M CPU Units Only)

	6-4 Changing the Timer/Counter PV Refresh Mode
	6-4-1 Overview
	6-4-2 Functional Specifications
	6-4-3 BCD Mode/Binary Mode Selection and Confirmation
	6-4-4 BCD Mode/Binary Mode Mnemonics and Data
	6-4-5 Restrictions
	6-4-6 Instructions and Operands

	6-5 Using a Scheduled Interrupt as a High-precision Timer (CJ1M Only)
	6-5-1 Setting the Scheduled Interrupt to Units of 0.1 ms
	6-5-2 Specifying a Reset Start with MSKS(690)
	6-5-3 Reading the Internal Timer PV with MSKR(692)

	6-6 Startup Settings and Maintenance
	6-6-1 Hot Start/Hot Stop Functions
	6-6-2 Startup Mode Setting
	6-6-3 RUN Output
	6-6-4 Power OFF Detection Delay Setting
	6-6-5 Disabling Power OFF Interrupts
	6-6-6 Clock Functions
	6-6-7 Program Protection
	6-6-8 Remote Programming and Monitoring
	6-6-9 Unit Profiles
	6-6-10 Flash Memory
	6-6-11 Startup Condition Settings

	6-7 Diagnostic Functions
	6-7-1 Error Log
	6-7-2 Output OFF Function
	6-7-3 Failure Alarm Functions
	6-7-4 Failure Point Detection
	6-7-5 Simulating System Errors
	6-7-6 Disabling Error Log Storage of User-defined FAL Errors

	6-8 CPU Processing Modes
	6-8-1 CPU Processing Modes
	6-8-2 Parallel Processing Mode and Minimum Cycle Times
	6-8-3 Data Concurrency in Parallel Processing with Asynchronous Memory Access

	6-9 Peripheral Servicing Priority Mode
	6-9-1 Peripheral Servicing Priority Mode
	6-9-2 Temporarily Disabling Priority Mode Servicing

	6-10 Battery-free Operation
	6-11 Other Functions
	6-11-1 I/O Response Time Settings
	6-11-2 I/O Area Allocation


	SECTION 7 Program Transfer, Trial Operation, and Debugging
	7-1 Program Transfer
	7-2 Trial Operation and Debugging
	7-2-1 Forced Set/Reset
	7-2-2 Differential Monitoring
	7-2-3 Online Editing
	7-2-4 Tracing Data


	Appendix A PLC Comparison Charts: CJ-series, CS-series, C200HG/HE/HX, CQM1H, CVM1, and CV-series PLCs
	Appendix B Changes from Previous Host Link Systems
	Index
	Revision History



